Advertisement

JOM

, Volume 70, Issue 6, pp 872–878 | Cite as

Rapid Assessment of the Ce-Co-Fe-Cu System for Permanent Magnetic Applications

  • F. MengEmail author
  • R. P. ChaudharyEmail author
  • K. Gandha
  • I. C. Nlebedim
  • A. Palasyuk
  • E. Simsek
  • M. J. Kramer
  • R. T. Ott
Recent Developments in the Processing of Magnetic Materials

Abstract

This work focuses on the rapid synthesis and characterization of quaternary Ce(CoFeCu)5 alloy libraries to assess their potential viability as permanent magnets. Arrays of bulk specimens with controlled compositions were synthesized via laser engineered net shaping (LENS) by feeding different ratios of alloy powders into a melt pool created by a laser. Based on the assessment of the magnetic properties of the LENS printed samples, arc-melted and cast ingots were prepared with varying Fe (5–20 at.%) and Co (60–45 at.%) compositions while maintaining constant Ce (16 at.%) and Cu (19 at.%) content. The evolution of the microstructure and phases with varying chemical compositions and their dependence on magnetic properties are analyzed in as-cast and heat-treated samples. In both the LENS printed and cast samples, we find the best magnetic properties correspond to a predominantly single-phase Ce(CoFeCu)5 microstructure in which high coercivity (Hc > 10 kOe) can be achieved without any microstructural refinement.

Notes

Acknowledgements

This work is supported by the Critical Materials Institute, an Energy Innovation Hub funded by the US Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. The Ames Laboratory is operated by Iowa State University under Contract No. DE-AC02-07CH11358. We also thank Sergey L. Bud’ko and Paul C. Canfield for valuable inputs and recommendations.

References

  1. 1.
    K. Gandha, K. Elkins, N. Poudyal, X. Liu, and J.P. Liu, Sci. Rep. 4, 5345 (2014).  https://doi.org/10.1038/srep05345.CrossRefGoogle Scholar
  2. 2.
    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu, Adv. Mater. 23, 821 (2011).  https://doi.org/10.1002/adma.201002180.CrossRefGoogle Scholar
  3. 3.
    J.M.D. Coey, IEEE Trans. Magn. 47, 4671 (2011).  https://doi.org/10.1109/TMAG.2011.2166975.CrossRefGoogle Scholar
  4. 4.
    M.J. Kramer, R.W. McCallum, I.A. Anderson, and S. Constantinides, JOM 64, 752 (2012).  https://doi.org/10.1007/s11837-012-0351-z.CrossRefGoogle Scholar
  5. 5.
    R. Skomski, P. Manchanda, P. Kumar, B. Balamurugan, A. Kashyap, and D.J. Sellmyer, IEEE Trans. Magn. 49, 3215 (2013).  https://doi.org/10.1109/TMAG.2013.2248139.CrossRefGoogle Scholar
  6. 6.
    E.A. Nesbitt, G.Y. Chin, P.K. Gallagher, R.C. Sherwood, and J.H. Wernick, J. Appl. Phys. 42, 1530 (1971).  https://doi.org/10.1063/1.1660325.CrossRefGoogle Scholar
  7. 7.
    E.A. Nesbitt, J. Appl. Phys. 40, 1259 (1969).  https://doi.org/10.1063/1.1657619.CrossRefGoogle Scholar
  8. 8.
    R.C. Sherwood, E.A. Nesbitt, G.Y. Chin, and M.L. Green, Mater. Res. Bull. 7, 489 (1972).  https://doi.org/10.1016/0025-5408(72)90151-1.CrossRefGoogle Scholar
  9. 9.
    K. Kumar, J. Appl. Phys. 63, R13 (1988).  https://doi.org/10.1063/1.341084.CrossRefGoogle Scholar
  10. 10.
    C.V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Jaeger, X. Chen, R. Contieri, R.V. Ramanujan, and R. Banerjee, JOM 69, 532 (2017).  https://doi.org/10.1007/s11837-017-2257-2.CrossRefGoogle Scholar
  11. 11.
    T. Borkar, R. Conteri, X. Chen, R.V. Ramanujan, and R. Banerjee, Mater. Manuf. Process. 32, 1581 (2017).  https://doi.org/10.1080/10426914.2016.1244849.CrossRefGoogle Scholar
  12. 12.
    B. Zhang, N.-E. Fenineche, H. Liao, and C. Coddet, J. Magn. Magn. Mater. 336, 49 (2013).  https://doi.org/10.1016/j.jmmm.2013.02.014.CrossRefGoogle Scholar
  13. 13.
    E.M.H. White, A.G. Kassen, E. Simsek, W. Tang, R.T. Ott, and I.E. Anderson, IEEE Trans. Magn. 53, 1 (2017).  https://doi.org/10.1109/TMAG.2017.2711965.CrossRefGoogle Scholar
  14. 14.
    M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers, J. Appl. Phys. 113, 231101 (2013).  https://doi.org/10.1063/1.4803530.CrossRefGoogle Scholar
  15. 15.
    K. Rajan, Annu. Rev. Mater. Res. 38, 299 (2008).  https://doi.org/10.1146/annurev.matsci.38.060407.130217.CrossRefGoogle Scholar
  16. 16.
    S.I. Woo, K.W. Kim, H.Y. Cho, K.S. Oh, M.K. Jeon, N.H. Tarte, T.S. Kim, and A. Mahmood, QSAR Comb. Sci. 24, 138 (2005).  https://doi.org/10.1002/qsar.200420061.CrossRefGoogle Scholar
  17. 17.
    J. Geng, I.C. Nlebedim, M.F. Besser, E. Simsek, and R.T. Ott, JOM 68, 1972 (2016).  https://doi.org/10.1007/s11837-016-1918-x.CrossRefGoogle Scholar
  18. 18.
    A. Palasyuk, T.N. Lamichhane, O. Palasyuk, M. Onyszczak, D. Gates, V. Taufour, V. Antropov, S. Bud’ko, and P.C. Canfield, in 62nd Annual Conferences on Magnetism and Magnetic Materials, 632 (2017).Google Scholar
  19. 19.
    Materials Preparation Center at Ames Laboratory (USDOE), Ames, IA, USA. www.mpc.ameslab.gov. Accessed on Aug 2017.
  20. 20.
    K. Strnat, G. Hoffer, J. Olson, W. Ostertag, and J.J. Becker, J. Appl. Phys. 38, 1001 (1967).  https://doi.org/10.1063/1.1709459.CrossRefGoogle Scholar
  21. 21.
    E.A. Nesbitt, G.Y. Chin, R.C. Sherwood, and J.H. Wernick, Appl. Phys. Lett. 16, 312 (1970).  https://doi.org/10.1063/1.1653207.CrossRefGoogle Scholar
  22. 22.
    T. Yoshio and S. Harufumi, Jpn. J. Appl. Phys. 7, 966 (1968).CrossRefGoogle Scholar
  23. 23.
    H. Leamy and M. Green, IEEE Trans. Magn. 9, 205 (1973).  https://doi.org/10.1109/TMAG.1973.1067642.CrossRefGoogle Scholar
  24. 24.
    R. Skomski and D.J. Sellmyer, in Handbook of Advanced Magnetic Materials, ed. by Y. Liu, D.J. Sellmyer, and D. Shindo (Springer, Boston, 2006), pp. 1–57.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • F. Meng
    • 1
    • 2
    Email author
  • R. P. Chaudhary
    • 1
    Email author
  • K. Gandha
    • 1
  • I. C. Nlebedim
    • 1
  • A. Palasyuk
    • 2
  • E. Simsek
    • 1
  • M. J. Kramer
    • 1
    • 2
  • R. T. Ott
    • 1
    • 2
  1. 1.The Critical Materials InstituteAmes Laboratory (USDOE)AmesUSA
  2. 2.Division of Materials Science and EngineeringAmes Laboratory (USDOE)AmesUSA

Personalised recommendations