Advertisement

JOM

, Volume 70, Issue 6, pp 866–871 | Cite as

Ageless Aluminum-Cerium-Based Alloys in High-Volume Die Casting for Improved Energy Efficiency

  • Eric T. Stromme
  • Hunter B. Henderson
  • Zachary C. Sims
  • Michael S. Kesler
  • David Weiss
  • Ryan T. Ott
  • Fanqiang Meng
  • Sam Kassoumeh
  • James Evangelista
  • Gerald Begley
  • Orlando Rios
Recent Developments in the Processing of Magnetic Materials
  • 249 Downloads

Abstract

Strong chemical reactions between Al and Ce lead to the formation of intermetallics with exceptional thermal stability. The rapid formation of intermetallics directly from the liquid phase during solidification of Al-Ce alloys leads to an ultrafine microconstituent structure that effectively strengthens as-cast alloys without further microstructural optimization via thermal processing. Die casting is a high-volume manufacturing technology that accounts for greater than 40% of all cast Al products, whereas Ce is highly overproduced as a waste product of other rare earth element (REE) mining. Reducing heat treatments would stimulate significant improvements in manufacturing energy efficiency, exceeding (megatonnes/year) per large-scale heat-treatment line. In this study, multiple compositions were evaluated with wedge mold castings to test the sensitivity of alloys to the variable solidification rate inherent in high-pressure die casting. Once a suitable composition was determined, it was successfully demonstrated at 800 lbs/h in a 600-ton die caster, after which the as-die cast parts performed similarly to ubiquitous A380 in the same geometry without requiring heat treatment. This work demonstrates the compatibility of Al REE alloys with high-volume die-casting applications with minimal heat treatments.

Notes

Acknowledgements

This research was sponsored by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office, Eck Industries, and TTE Casting Technologies.

Supplementary material

11837_2018_2861_MOESM1_ESM.pdf (240 kb)
Supplementary material 1 (PDF 239 kb)

References

  1. 1.
    Ducker Worldwide, 2015 North American Light Vehicle Aluminum Content Study (2015).Google Scholar
  2. 2.
    A.C. Street, The Diecasting Book (Redhill: Portcullis Press, 1977).Google Scholar
  3. 3.
    L. Wang, M. Makhlouf, and D. Apelian, Int. Mater. Rev. 40, 221 (1995).CrossRefGoogle Scholar
  4. 4.
    E.J. Vinarcik, High Integrity Die Casting Processes (New York: Wiley, 2002).Google Scholar
  5. 5.
    F. Bonollo, N. Gramegna, and G. Timelli, JOM 67, 901 (2015).CrossRefGoogle Scholar
  6. 6.
    A.R. Adamane, L. Arnberg, E. Fiorese, G. Timelli, and F. Bonollo, Int. J. Metalcast. 9, 43 (2015).CrossRefGoogle Scholar
  7. 7.
    D.L. Twarog, Cast. Eng. (2017).Google Scholar
  8. 8.
    S. Ji, Y. Wang, D. Watson, and Z. Fan, Metall. Mater. Trans. A 44, 3185 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Cecchel, G. Cornacchia, and A. Panvini, JOM 68, 2443 (2016).CrossRefGoogle Scholar
  10. 10.
    P. Hobson, Reuters (2017).Google Scholar
  11. 11.
    Y. Fedorinova, Bloomberg (2015).Google Scholar
  12. 12.
    J.E. Tilton, R.G. Eggert, and H.H. Landsberg, World mineral exploration: Trends and economic issues (New York: Routledge, 2015).Google Scholar
  13. 13.
    M. Boota, M.P. Paranthaman, A.K. Naskar, Y. Li, K. Akato, and Y. Gogotsi, Chemsuschem 8, 3576 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. Li, G. Fu, M. Watson, S. Harrison, and M.P. Paranthaman, ChemNanoMat 2, 642 (2016).CrossRefGoogle Scholar
  15. 15.
    W.E. Tenhaeff, O. Rios, K. More, and M.A. McGuire, Adv. Funct. Mater. 24, 86 (2014).CrossRefGoogle Scholar
  16. 16.
    R.T. Nguyen and D.D. Imholte, JOM 68, 1948 (2016).CrossRefGoogle Scholar
  17. 17.
    P. Bakke, K. Pettersen, and H. Westengen, JOM 55, 46 (2003).CrossRefGoogle Scholar
  18. 18.
    F. Cecchinato, N.A. Agha, A.H. Martinez-Sanchez, B.J.C. Luthringer, F. Feyerabend, R. Jimbo, R. Willumeit-Römer, and A. Wennerberg, PLoS ONE 10, e0142117 (2015).CrossRefGoogle Scholar
  19. 19.
    Z.C. Sims, D. Weiss, S.K. McCall, M.A. McGuire, R.T. Ott, T. Geer, O. Rios, and P.E.A. Turchi, JOM 68, 1940 (2016).CrossRefGoogle Scholar
  20. 20.
    Z.C. Sims, O.R. Rios, D. Weiss, P.E.A. Turchi, A. Perron, J.R.I. Lee, T.T. Li, J.A. Hammons, M. Bagge-Hansen, T.M. Willey, K. An, Y. Chen, A.H. King, and S.K. McCall, Mater. Horiz. (2017).Google Scholar
  21. 21.
    J.H. Perepezko and K. Hildal, Philos. Mag. 86, 3681 (2006).CrossRefGoogle Scholar
  22. 22.
    D. Liu, Y. Liu, Y. Huang, R. Song, and M. Chen, Prog. Nat. Sci. Mater. Int. 24, 452 (2014).CrossRefGoogle Scholar
  23. 23.
    G. Timelli and F. Bonollo, Mater. Sci. Eng. A 528, 273 (2010).CrossRefGoogle Scholar
  24. 24.
    J. Gröbner, D. Kevorkov, and R. Schmid-Fetzer, Intermetallics 10, 415 (2002).CrossRefGoogle Scholar
  25. 25.
    A.L. Kearney, in Prop. Sel. Nonferrous Alloys Spec.-Purp. Mater. (ASM International, Materials Park, 1990).Google Scholar
  26. 26.
    J.-I. Cho and C.-W. Kim, Int. J. Met. 8, 49 (2014).Google Scholar
  27. 27.
    A. Plotkowski, O. Rios, N. Sridharan, Z. Sims, K. Unocic, R.T. Ott, R.R. Dehoff, and S.S. Babu, Acta Mater. 126, 507 (2017).CrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.University of TennesseeKnoxvilleUSA
  3. 3.Eck Industries, Inc.ManitowocUSA
  4. 4.Ames Laboratory (USDOE)AmesUSA
  5. 5.Shiloh Industries, Inc.PlymouthUSA
  6. 6.Tennessee Tool and Engineering, Inc.Oak RidgeUSA

Personalised recommendations