Advertisement

JOM

pp 1–6 | Cite as

Fast Slip Velocity in a High-Entropy Alloy

Mechanical Behavior at the Nanoscale

Abstract

Due to fluctuations in nearest-neighbor distances and chemistry within the unit cell, high-entropy alloys are believed to have a much higher resistance to dislocation motion than pure crystals. Here, we investigate the coarse-grained dynamics of a number of dislocations being active during a slip event. We found that the time-resolved dynamics of slip is practically identical in Au〈001〉 and an Al0.3CoCrFeNi〈001〉 high-entropy alloy, but much faster than in Nb〈001〉. Differences between the FCC-crystals are seen in the spatiotemporal velocity profile, with faster acceleration and slower velocity relaxation in the high-entropy alloy. Assessing distributions that characterize the intermittently evolving plastic flow reveals material-dependent scaling exponents for size, duration, and velocity–size distributions. The results are discussed in view of the underlying dislocation mobility.

Notes

Acknowledgements

This research was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. G.S. and R.M. especially thank Kathy Walsh for experimental support with the Hysitron TriboIndenter. R.M. would like to thank P.M. Derlet for fruitful discussions, and is grateful for financial support by the NSF CAREER program (grant NSF DMR 1654065), and for start-up funds provided by the Department of Materials Science and Engineering at UIUC. The authors also thank P. Liaw for providing the HEA.

References

  1. 1.
    D.B. Miracle and O.N. Senkov, Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
  2. 2.
    J.W. Yeh, Annales de Chimie Science des Materiaux (Paris) 31, 633 (2006).CrossRefGoogle Scholar
  3. 3.
    H. Oh, D. Ma, G. Leyson, B. Grabowski, E. Park, F. Körmann, and D. Raabe, Entropy 18, 321 (2016).CrossRefGoogle Scholar
  4. 4.
    J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Metall. Mater. Trans. A 35A, 2533 (2004).CrossRefGoogle Scholar
  5. 5.
    B.S. Murty, J.W. Yeh, and S. Ranganathan, High-Entropy Alloys, 1st edn. Elsevier.Google Scholar
  6. 6.
    S. Maiti and W. Steurer, Acta Mater. 106, 87 (2016).CrossRefGoogle Scholar
  7. 7.
    Y. Zou, S. Maiti, W. Steurer, and R. Spolenak, Acta Mater. 65, 85 (2014).CrossRefGoogle Scholar
  8. 8.
    J.C. Rao, V. Ocelík, D. Vainchtein, Z. Tang, P.K. Liaw, and J.T.M. De Hosson, Rev. Adv. Mater. Sci. 48, 105 (2017).Google Scholar
  9. 9.
    A.V. Podolskiy, E.D. Tabachnikova, V.V. Voloschuk, V.F. Gorban, N.A. Krapivka, and S.A. Firstov, Mater. Sci. Eng. A 710, 136 (2018).CrossRefGoogle Scholar
  10. 10.
    S. Yoshida, T. Bhattacharjee, Y. Bai, and N. Tsuji, Scripta Mater. 134, 33 (2017).CrossRefGoogle Scholar
  11. 11.
    Y.Y. Zhao and T.G. Nieh, Intermetallics 86, 45 (2017).CrossRefGoogle Scholar
  12. 12.
    H. Neuhäuser, Dislocations Solids 6, 319 (1983).Google Scholar
  13. 13.
    T.K. Liu, Z. Wu, A.D. Stoica, Q. Xie, W. Wu, Y.F. Gao, H. Bei, and K. An, Mater. Des. 131, 419 (2017).CrossRefGoogle Scholar
  14. 14.
    F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George, Acta Mater. 61, 5743 (2013).CrossRefGoogle Scholar
  15. 15.
    Q. Lin, X. An, H. Liu, Q. Tang, P. Dai, and X. Liao, J. Alloys Compd. 709, 802 (2017).CrossRefGoogle Scholar
  16. 16.
    J. Liu, C. Chen, Y. Xu, S. Wu, G. Wang, H. Wang, Y. Fang, and L. Meng, Scr. Mater. 137, 9 (2017).CrossRefGoogle Scholar
  17. 17.
    J. Miao, C.E. Slone, T.M. Smith, C. Niu, H. Bei, M. Ghazisaeidi, G.M. Pharr, and M.J. Mills, Acta Mater. 132, 35 (2017).CrossRefGoogle Scholar
  18. 18.
    S.I. Rao, C. Woodward, T.A. Parthasarathy, and O. Senkov, Acta Mater. 134, 188 (2017).CrossRefGoogle Scholar
  19. 19.
    S. Zhao, Y.N. Osetsky, and Y. Zhang, J. Alloys Compd. 701, 1003 (2017).CrossRefGoogle Scholar
  20. 20.
    W.G. Nöhring and W.A. Curtin, Acta Mater. 128, 135 (2017).CrossRefGoogle Scholar
  21. 21.
    S. Zhao, G.M. Stocks, and Y. Zhang, Acta Mater. 134, 334 (2017).CrossRefGoogle Scholar
  22. 22.
    G. Sparks, P.S. Phani, U. Hangen, and R. Maass, Acta Mater. 122, 109 (2017).CrossRefGoogle Scholar
  23. 23.
    R. Maass, P.M. Derlet, and J.R. Greer, Small 11, 341 (2015).CrossRefGoogle Scholar
  24. 24.
    R. Maass, P.M. Derlet, and J.R. Greer, Scr. Mater. 69, 586 (2013).CrossRefGoogle Scholar
  25. 25.
    M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng., A 400–401, 268 (2005).CrossRefGoogle Scholar
  26. 26.
    R.X. Li, P.K. Liaw, and Y. Zhang, Mater. Sci. Eng. A 707, 668 (2017).CrossRefGoogle Scholar
  27. 27.
    W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Intermetallics 26, 44 (2012).CrossRefGoogle Scholar
  28. 28.
    R. Maass, C.A. Volkert, and P.M. Derlet, Scr. Mater. 102, 27 (2015).CrossRefGoogle Scholar
  29. 29.
    R. Maass, M. Wraith, J.T. Uhl, J.R. Greer, and K.A. Dahmen, Phys. Rev. E 91, 042403 (2015).CrossRefGoogle Scholar
  30. 30.
    J. Alstott, E. Bullmore, and D. Plenz, PLoS One 9 (4), e95816 (2014).  https://doi.org/10.1371/journal.pone.0085777.CrossRefGoogle Scholar
  31. 31.
    D.M. Dimiduk, C. Woodward, R. LeSar, and M.D. Uchic, Science 312, 1188 (2006).CrossRefGoogle Scholar
  32. 32.
    M. Zaiser, J. Schwerdtfeger, A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, and E. Arzt, Phil. Mag. 88, 3861 (2008).CrossRefGoogle Scholar
  33. 33.
    N. Friedman, A.T. Jennings, G. Tsekenis, J.-Y. Kim, M. Tao, J.T. Uhl, J.R. Greer, and K.A. Dahmen, Phys. Rev. Lett. 109, 095507 (2012).CrossRefGoogle Scholar
  34. 34.
    F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Science 318, 251 (2007).CrossRefGoogle Scholar
  35. 35.
    R. Maass and P.M. Derlet, Acta Mater. 143, 338 (2018).CrossRefGoogle Scholar
  36. 36.
    J. Antonaglia, W.J. Wright, X. Gu, R.R. Byer, T.C. Hufnagel, M. LeBlanc, J.T. Uhl, and K.A. Dahmen, Phys. Rev. Lett. 112, 155501 (2014).CrossRefGoogle Scholar
  37. 37.
    M. LeBlanc, L. Angheluta, K. Dahmen, and N. Goldenfeld, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 87, 022126 (2013).CrossRefGoogle Scholar
  38. 38.
    A. Dobrinevski, P. Le Doussal, and K.J. Wiese, EPL (Europhysics Letters) 108, 66002 (2014).CrossRefGoogle Scholar
  39. 39.
    G. Sparks and R. Maass, Acta Mater. (2018).  https://doi.org/10.1016/j.actamat.2018.04.007.
  40. 40.
    W.G. Nöhring, Dislocation Cross-Slip in Face-Centered Cubic Solid Solution Alloys, École Polytechnique Fédérale de Lausanne, Thesis Nr. 8383 (2018).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations