JOM

pp 1–6 | Cite as

Comparing Modeling Predictions of Aluminum Edge Dislocations: Semidiscrete Variational Peierls–Nabarro Versus Atomistics

Mechanical Behavior at the Nanoscale
  • 16 Downloads

Abstract

Multiple computational methods for modeling dislocations are implemented within a high-throughput calculation framework allowing for rigorous investigations comparing the methodologies. Focusing on aluminum edge dislocations, 21 classical aluminum interatomic potentials are used to directly model dislocation core structures using molecular dynamics and to provide input data for solving the semidiscrete variational Peierls–Nabarro dislocation model. The predicted dislocation core spreading obtained from both computational methods shows similar trends across the potentials. Additionally, tests are done to rigorously determine if a recent correction to the Peierls–Nabarro model results in better agreement with the atomistic calculations.

Supplementary material

11837_2018_2836_MOESM1_ESM.pdf (317 kb)
Supplementary material 1 (PDF 316 kb)

References

  1. 1.
    V.V. Bulatov and E. Kaxiras, Phys. Rev. Lett. 78, 4221 (1997).CrossRefGoogle Scholar
  2. 2.
    G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras, Phys. Rev. B 62, 3099 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Lu, N. Kioussis, V.V. Bulatov, and E. Kaxiras, Philos. Mag. Lett. 80, 675 (2000).CrossRefGoogle Scholar
  4. 4.
    R. Miller, R. Phillips, G. Beltz, and M. Ortiz, J. Mech. Phys. Solids 46, 1845 (1998).MathSciNetCrossRefGoogle Scholar
  5. 5.
    S.F. Wang, J. Phys. A: Math. Theor. 42, 025208 (2009).CrossRefGoogle Scholar
  6. 6.
    R. Wang, S.F. Wang, X.Z. Wu, and Q.Y. Wei, Phys. Scr. 81, 065601 (2010).CrossRefGoogle Scholar
  7. 7.
    X.Z. Wu, S.F. Wang, and R.P. Liu, Acta. Mech. Sin. 26, 425 (2010).CrossRefGoogle Scholar
  8. 8.
    R. Wang, S.F. Wang, and X.Z. Wu, Phys. Scr. 83, 045604 (2011).CrossRefGoogle Scholar
  9. 9.
    Y.Z. Jiang, R. Wang, and S.F. Wang, Philos. Mag. 96, 2829 (2016).CrossRefGoogle Scholar
  10. 10.
    S.R. Li, X.Z. Wu, T. Zhang, Y.X. Tian, Z.X. Yan, and H.Z. Zhu, Phys. Chem. Miner. 43, 563 (2016).CrossRefGoogle Scholar
  11. 11.
    G.S. Liu, X. Cheng, J. Wang, K.G. Chen, and Y. Shen, Scr. Mater. 120, 94 (2016).CrossRefGoogle Scholar
  12. 12.
    G.S. Liu, X. Cheng, J. Wang, K.G. Chen, and Y. Shen, Comput. Mater. Sci. 131, 69 (2017).CrossRefGoogle Scholar
  13. 13.
    G.S. Liu, X. Cheng, J. Wang, K.G. Chen, and Y. Shen, Sci. Rep. 7, 43785 (2017).CrossRefGoogle Scholar
  14. 14.
    Z.T. Trautt, F. Tavazza, and C.A. Becker, Modell. Simul. Mater. Sci. Eng. 23, 074009 (2015).CrossRefGoogle Scholar
  15. 15.
    S. Plimpton, J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
  16. 16.
    X.Y. Liu, P.P. Ohotnicky, J.B. Adams, C.L. Rohrer, and R.W. Hyland, Surf. Sci. 373, 357 (1997).CrossRefGoogle Scholar
  17. 17.
    X.Y. Liu and J.B. Adams, Acta Mater. 46, 3467 (1998).CrossRefGoogle Scholar
  18. 18.
    X.Y. Liu, C.L. Liu, and L.J. Borucki, Acta Mater. 47, 3227 (1999).CrossRefGoogle Scholar
  19. 19.
    Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).CrossRefGoogle Scholar
  20. 20.
    A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.Y. Liu, Acta Mater. 48, 3621 (2000).CrossRefGoogle Scholar
  21. 21.
    J.B. Sturgeon and B.B. Laird, Phys. Rev. B 62, 14720 (2000).CrossRefGoogle Scholar
  22. 22.
    Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 65, 224114 (2002).CrossRefGoogle Scholar
  23. 23.
    R.R. Zope and Y. Mishin, Phys. Rev. B 68, 024102 (2003).CrossRefGoogle Scholar
  24. 24.
    X.Y. Liu, F. Ercolessi, and J.B. Adams, Modell. Simul. Mater. Sci. Eng. 12, 665 (2004).CrossRefGoogle Scholar
  25. 25.
    Y. Mishin, Acta Mater. 52, 1451 (2004).CrossRefGoogle Scholar
  26. 26.
    M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han, J. Mater. Res. 20, 208 (2005).CrossRefGoogle Scholar
  27. 27.
    M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008).CrossRefGoogle Scholar
  28. 28.
    M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt, Philos. Mag. 89, 3269 (2009).CrossRefGoogle Scholar
  29. 29.
    G.P.P. Pun and Y. Mishin, Philos. Mag. 89, 3245 (2009).CrossRefGoogle Scholar
  30. 30.
    J.M. Winey, K. Alison, and Y.M. Gupta, Modell. Simul. Mater. Sci. Eng. 17, 055004 (2009).CrossRefGoogle Scholar
  31. 31.
    J.M. Winey, K. Alison, and Y.M. Gupta, Modell. Simul. Mater. Sci. Eng. 18, 029801 (2010).CrossRefGoogle Scholar
  32. 32.
    M.I. Pascuet and J.R. Fernandez, J. Nucl. Mater. 467, 229 (2015).CrossRefGoogle Scholar
  33. 33.
    G.P. Purja Pun, V. Yamakov, and Y. Mishin, Modell. Simul. Mater. Sci. Eng. 23, 065006 (2015).CrossRefGoogle Scholar
  34. 34.
    M.J.D. Powell, Comput. J. 7, 155 (1964).MathSciNetCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Materials Science and Engineering DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations