Microstructure Evolution and Related Magnetic Properties of Cu-Zr-Al-Gd Phase-Separating Metallic Glasses
- 47 Downloads
Abstract
We carefully investigated the correlation between microstructures and magnetic properties of Cu-Zr-Al-Gd phase-separating metallic glasses (PSMGs). The saturation magnetizations of the PSMGs were determined by total Gd contents of the alloys, while their coercivity exhibits a large deviation by the occurrence of phase separation due to the boundary pinning effect of hierarchically separated amorphous phases. Especially, the PSMGs containing Gd-rich amorphous nanoparticles show the highest coercivity which can be attributed to the size effect of the ferromagnetic amorphous phase. Furthermore, the selective crystallization of ferromagnetic amorphous phases can affect the magnetization behavior of the PSMGs. Our results could provide a novel strategy for tailoring unique soft magnetic properties of metallic glasses by introducing hierarchically separated amorphous phases and controlling their crystallinity.
Notes
Ackowledgements
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science, ICT and Future Planning) (No. 2014K1A3A1A20034841). One of the authors (E.S. Park) also benefited from the Institute of Engineering Research at Seoul National University.
Supplementary material
References
- 1.A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
- 2.D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, and J. Eckert, Prog. Mater Sci. 58, 1103 (2013).CrossRefGoogle Scholar
- 3.N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, and L. Schultz, Scripta Mater. 53, 271 (2005).CrossRefGoogle Scholar
- 4.B.J. Park, H.J. Chang, D.H. Kim, W.T. Kim, K. Chattopadhyay, T.A. Abinandanan, and S. Bhattacharyya, Phys. Rev. Lett. 96, 245503 (2006).CrossRefGoogle Scholar
- 5.H.J. Chang, W. Yook, E.S. Park, J.S. Kyeong, and D.H. Kim, Acta Mater. 58, 2483 (2010).CrossRefGoogle Scholar
- 6.A. Gebert, A.A. Kündig, L. Schultz, and K. Hono, Scr. Mater. 51, 961 (2004).CrossRefGoogle Scholar
- 7.J. Jayaraj, B.J. Park, D.H. Kim, W.T. Kim, and E. Fleury, Scr. Mater. 55, 1063 (2006).CrossRefGoogle Scholar
- 8.A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).CrossRefGoogle Scholar
- 9.E.S. Park, J.S. Kyeong, and D.H. Kim, Scr. Mater. 57, 49 (2007).CrossRefGoogle Scholar
- 10.Q. Luo, D.Q. Zhao, M.X. Pan, and W.H. Wang, Appl. Phys. Lett. 89, 081914 (2006).CrossRefGoogle Scholar
- 11.L. Liang, X. Hui, Y. Wu, and G.L. Chen, J. Alloys Compd. 457, 541 (2008).CrossRefGoogle Scholar
- 12.H. Fu, X.Y. Zhang, H.J. Yu, B.H. Teng, and X.T. Zu, Solid State Commun. 145, 15 (2008).CrossRefGoogle Scholar
- 13.K.-W. Kim et al., Biodesign 5, 24 (2017).Google Scholar
- 14.L.G. Zhang, H.Q. Dong, G.X. Huang, J. Shan, L.B. Liu, and Z.P. Jin, Calphad 33, 664 (2009).CrossRefGoogle Scholar
- 15.K. Yamaguchi, Y.C. Song, T. Yoshida, and K. Itagaki, J. Alloys Compd. 452, 73 (2008).CrossRefGoogle Scholar
- 16.V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex, J. Alloys Compd. 385, 133 (2004).Google Scholar
- 17.T. Wang, Z. Jin, and J.C. Zhao, J. Phase Equilib. 22, 544 (2001).CrossRefGoogle Scholar
- 18.H. Bo, L.B. Liu, J.L. Hu, X.D. Zhang, and Z.P. Jin, Thermochim. Acta 591, 51 (2014).CrossRefGoogle Scholar
- 19.M. Zinkevich, N. Mattern, and H.J. Seifer, J. Phase Equilib. 22, 43 (2001).CrossRefGoogle Scholar
- 20.C.H.P. Lupis, Chemical thermodynamics of materials, 1st ed. (North-Holland: Elsevier Science Ltd, 1983), pp. 304–305.Google Scholar
- 21.G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
- 22.J. Ilavsky and P.R. Jemian, J. Appl. Crystallogr. 42, 347 (2009).CrossRefGoogle Scholar
- 23.G. Beaucage, H.K. Kammler, and S.E. Pratsinis, J. Appl. Crystallogr. 37, 523 (2004).CrossRefGoogle Scholar
- 24.F. Yuan, J. Du, and B. Shen, Appl. Phys. Lett. 101, 032405 (2012).CrossRefGoogle Scholar
- 25.J.H. Han, N. Mattern, B. Schwarz, S. Gorantla, T. Gemming, and J. Eckert, Intermetallics 20, 115 (2012).CrossRefGoogle Scholar
- 26.R.C. O’Handley, Modern magnetic materials: principles and applications, 1st ed. (New York: Wiley, 1999), pp. 403–405.Google Scholar
- 27.T. Bitoh, A. Makino, and A. Inoue, J. Appl. Phys. 99, 08F102 (2006).CrossRefGoogle Scholar
- 28.Y.A. Koksharov, S.P, ed. Magnetic Nanoparticles (Gubin (Weinheim): Wiley, 2009), p. 197.Google Scholar
- 29.C. Luna, M. del Puerto Morales, C.J. Serna, and M. Vázquez, Nanotechnology 14, 268 (2003).CrossRefGoogle Scholar
- 30.C.L. Zhang, D.H. Wang, Z.D. Han, H.C. Xuan, B.X. Gu, and Y.W. Du, J. Appl. Phys. 105, 013912 (2009).CrossRefGoogle Scholar