, Volume 71, Issue 2, pp 602–607 | Cite as

CIGS Solar Cells for Space Applications: Numerical Simulation of the Effect of Traps Created by High-Energy Electron and Proton Irradiation on the Performance of Solar Cells

  • Samar DabbabiEmail author
  • Tarek Ben Nasr
  • Najoua Turki Kamoun
Energy Materials


Numerical simulation is carried out using the Silvaco ATLAS software to predict the effect of 1-MeV electron and 4-MeV proton irradiation on the performance of a Cu(In, Ga)Se2 (CIGS) solar cell that operates under the air mass zero spectrum (AM0). As a consequence of irradiation, two types of traps are induced including the donor- and acceptor-type traps. Only one of them (the donor-type trap) is found responsible for the degradation of the open-circuit voltage (VOC), fill factor (FF) and efficiency (η), while the short circuit current (JSC) remains essentially unaffected. The modelling simulation validity is verified by comparison with the experimental data. This article shows that CIGS solar cells are suited for space applications.

Supplementary material

11837_2018_2748_MOESM1_ESM.pdf (200 kb)
Supplementary material 1 (PDF 200 kb)


  1. 1.
    K. Otte, L. Makhova, and A. Braun, Thin Solid Films 613–622, 511 (2006).Google Scholar
  2. 2.
    P. Jackson and D. Hariskos, Photovolt. Res. Appl. 19, 894 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Jackson and D. Hariskos, Phys. Status Solidi 9, 28 (2015).Google Scholar
  4. 4.
    T.M. Friedlmeier and P. Jackson, Thin Solid Films 633, 13 (2017).CrossRefGoogle Scholar
  5. 5.
    H. Zarei and R. Malekfar, Chin. Phys. B 25, 27103 (2016).CrossRefGoogle Scholar
  6. 6.
    S. Kawakita, M. Imaizumi, and H. Kusawake, MRS Proc. 1792, 15-2148479 (2015).Google Scholar
  7. 7.
    A.D. Verkerk, J.K. Rath, and R.E.I. Schropp, Energy Procedia 2, 221 (2010).CrossRefGoogle Scholar
  8. 8.
    U. Rau, A. Jasenek, and H.W. Schock, Rev. Phys. Appl. 1, 1032 (2000).Google Scholar
  9. 9.
    S. Friese, ATLAS.ti 7 User Guide and Reference, 2nd ed (Springer, Berlin, 109.20131230. Updated for program version: 7.1.0, 2013), pp. 1–469.Google Scholar
  10. 10.
    D. Mazouz, A. Belgachi, and F. Hadjaj, Int J. Phys. Nat. Sci. Eng. 7, 285 (2013).Google Scholar
  11. 11.
    A.F. Meftah, N. Sengouga, and A. Belghachi, J. Phys. Condens. Matter 21, 215802 (2009).CrossRefGoogle Scholar
  12. 12.
    A. Jasenek and U. Rau, J. Appl. Phys. 90, 650 (2001).CrossRefGoogle Scholar
  13. 13.
    A. Jasenek, U. Rau, K. Weinert, H.W. Schock, and J.H. Werner, Thin Solid Films 387, 228 (2001).CrossRefGoogle Scholar
  14. 14.
    S. Kawakita, M. Imaizumi, and S. Ishizuka, MRS Proc. 1538, 27 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. Sheng-sheng and G. Xin, in Proceedings of RADECS PI-2, (2013), pp. 1–5.Google Scholar
  16. 16.
    A. Smets, O. Isabella, and K. Jager, Technol. Syst. 408, 111 (2016).Google Scholar
  17. 17.
    W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952).CrossRefGoogle Scholar
  18. 18.
    A.A. Lopez, Phys. Rev. 175, 823 (1968).CrossRefGoogle Scholar
  19. 19.
    A. Jasenek, U. Rau, and T. Hahn, Appl. Phys. A 70, 677 (2000).Google Scholar
  20. 20.
    B.P. Rand, J. Genoe, and P. Heremans, Prog. Photovolt. Res. Appl. 15, 659 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Hamache, N. Sengouga, and A. Meftah, Radiat. Phys. Chem. 123, 103 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Samar Dabbabi
    • 1
    Email author
  • Tarek Ben Nasr
    • 1
  • Najoua Turki Kamoun
    • 1
  1. 1.Laboratoire de Physique de la Matière Condensée (LPMC), Faculté des Sciences de TunisUniversité de Tunis EL ManarTunisTunisia

Personalised recommendations