pp 1–9 | Cite as

Forming Quality Control of an AA5182-O Aluminum Alloy Engine Hood Inner Panel

  • Huanhuan Li
  • Zhili HuEmail author
  • Wenzhi Hu
  • Lin Hua
Aluminum and Magnesium: High Strength Alloys for Automotive and Transportation Applications


The poor formability of aluminum alloys at room temperature easily leads to quality defects such as ruptures, wrinkles and excessive springback after forming, which severely restricts their wide application in the automotive industry. In this article, a combination of springback compensation and process parameter optimization is proposed to improve the forming quality of aluminum alloy auto body panels. First, the springback compensation for the tooling setting was conducted using the global shape modeling (GSM) function in ThinkDesign to ensure the desired dimensional quality of the hood. Then, the process parameter optimization was conducted based on the combination of a back-propagation (BP) neural network and genetic algorithm (GA) method to improve formability. After springback compensation and process parameter optimization, the obtained product could satisfy the matching requirements well. A case study of an AA5182-O aluminum alloy engine hood inner panel is presented. The experiments demonstrate that the combination of the springback compensation and the optimization scheme based on the BP neural network and GA can effectively improve the product’s forming quality.



This work is financially supported by the National Natural Science Foundation of China (U1564202), the National Natural Science Foundation of China (Grant Nos. 51405358 and 51775397), the 111 Project (B17034), the Innovative Research Team Development Program of Ministry of Education of China (IRT13087) and the Young and Middle-aged Science and Technology Innovation Team Project of Hubei Province (T201629). The authors express their sincere appreciation.


  1. 1.
    A.I. Taub and A.A. Luo, MRS Bull. 40, 1045 (2015).CrossRefGoogle Scholar
  2. 2.
    X. Xu, L. Zhan, and M. Huang, Am. Inst. Phys. Conf. Ser. 1567, 732 (2013).Google Scholar
  3. 3.
    X. Peng, S. Shi, and K. Hu, J. Mater. Eng. Perform. 22, 2990 (2013).CrossRefGoogle Scholar
  4. 4.
    W.J. Joost, JOM 64, 1032 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Rohatgi, A. Soulami, E.V. Stephens, R.W. Davies, and M.T. Smith, J. Mater. Process. Technol. 214, 722 (2014).CrossRefGoogle Scholar
  6. 6.
    C.A. Ungureanu, S. Das and I.S. Jawahir, in Aluminium Alloys for Transportation, 2007.Google Scholar
  7. 7.
    J. Liu, H. Gao, O.E. Fakir, L. Wang and J. Lin, in MATEC Web of Conferences, 2015.Google Scholar
  8. 8.
    P.F. Bariani, S. Bruschi, A. Ghiotti, and F. Michieletto, Procedia Cirp 18, 68 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Jinta, Y. Sakai, S. Horie, M. Oyagi, K. Matsui, and Y. Hasegawa, JSAE Rev. 22, 84 (2001).CrossRefGoogle Scholar
  10. 10.
    J. Zhou, B. Wang, J. Lin, and L. Fu, Arch. Civ. Mech. Eng. 13, 401 (2013).CrossRefGoogle Scholar
  11. 11.
    X. Fan, Z. He, and S. Yuan, Trans. Nonferr. Metals Soc. 22, s389 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. Wang, G. Huang, D. Liu, L. Chen, T. Han, J. Peng, and F. Pan, Trans. Nonferr. Metals Soc. 26, 1251 (2016).CrossRefGoogle Scholar
  13. 13.
    L. Ju, T. Mao, J. Malpica, and T. Altan, J. Manuf. Sci. E.-T. ASME 137, 1 (2015).Google Scholar
  14. 14.
    I.A. Choudhury and V. Ghomi, Proc. Inst. Mech. Eng. B J. Eng. 228, 917 (2013).CrossRefGoogle Scholar
  15. 15.
    D.M. Neto, M.C. Oliveira, R.E. Dick, P.D. Barros, J.L. Alves, and L.F. Menezes, Int. J. Mater. Form. 10, 125 (2017).CrossRefGoogle Scholar
  16. 16.
    S. Raju, G. Ganesan, and R. Karthikeyan, Trans. Nonferr. Metals Soc. 20, 1856 (2010).CrossRefGoogle Scholar
  17. 17.
    J. Chen, F. Lan, J. Wang, and Y. Wang, Global Design to Gain a Competitive Edge (Berlin: Springer, 2008), p. 529.CrossRefGoogle Scholar
  18. 18.
    S. Toros, F. Ozturk, and I. Kacar, J. Mater. Process. Technol. 207, 1 (2008).CrossRefGoogle Scholar
  19. 19.
    W. Gao, D. Wang, M. Seifi, and J.J. Lewandowski, Mater. Sci. Eng. A 730, 367 (2018).CrossRefGoogle Scholar
  20. 20.
    F. Barlat, Int. J. Plast. 5, 51 (1989).CrossRefGoogle Scholar
  21. 21.
    H. Xiao, Forming Analysis and Springback Controlling of Automotive Structural Part Using AHSS (Jinan: Shandong University, 2015) (in Chinese).Google Scholar
  22. 22.
    F. Yin, H.J. Mao, and L. Hua, Mater. Des. 32, 3457 (2011).CrossRefGoogle Scholar
  23. 23.
    H.M. Fang and G.S. Zhang, Appl. Mech. Mater. 33, 496 (2010).CrossRefGoogle Scholar
  24. 24.
    W. Wang, G. Chen, and Z. Lin, Trans. Nonferr. Metals Soc. 20, 471 (2010).CrossRefGoogle Scholar
  25. 25.
    M. Lovell, C.F. Higgs, P. Deshmukh, and A. Mobley, J. Mater. Process. Technol. 177, 87 (2006).CrossRefGoogle Scholar
  26. 26.
    G. Ma and B. Huang, J. Appl. Math. 2014, 1 (2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Huanhuan Li
    • 1
    • 2
    • 3
  • Zhili Hu
    • 2
    • 3
    Email author
  • Wenzhi Hu
    • 4
  • Lin Hua
    • 1
    • 2
    • 3
  1. 1.School of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.Hubei Key Laboratory of Advanced Technology of Automobile PartsWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.Hubei Collaborative Innovation Center for Automotive Components TechnologyWuhan University of TechnologyWuhanPeople’s Republic of China
  4. 4.Dongfeng Motor Corporation Technical CenterWuhanPeople’s Republic of China

Personalised recommendations