Advertisement

JOM

pp 1–10 | Cite as

Self-Assembled Recombinant Proteins on Metallic Nanoparticles as Bimodal Imaging Probes

  • Esra Yuca
  • Candan TamerlerEmail author
Protein-Based Structural Materials
  • 28 Downloads

Abstract

Combining multiple modalities is central to developing the new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owing to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self-assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous for assembling selective functional nano-entities or proteins onto nanoparticle surfaces. Herein we explored the formation of self-assembled hybrid metallic nano-architectures composed of gold and silver nanoparticles with fluorescent proteins for use as bimodal imaging probes. We employed metal-binding peptide-based assembly to self-assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biologic tissues and provide a high signal-to-noise ratio and sensitivity.

Notes

Acknowledgements

This study has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB 2219 Post-Doctoral Research Project. This investigation was supported by research Grant R01 DE025476 from the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892.

References

  1. 1.
    R. Misri, Multimodality imaging, in Molecular Imaging Techniques: New Frontiers (2013), pp. 162–176.  https://doi.org/10.4155/ebo.13.186.
  2. 2.
    A. Louie, Chem. Rev. 110, 5 (2010).  https://doi.org/10.1021/cr9003538.CrossRefGoogle Scholar
  3. 3.
    Q.L. Fan, K. Cheng, X. Hu, X.W. Ma, R.P. Zhang, M. Yang, X.M. Lu, L. Xing, W. Huang, S.S. Gambhir, and Z. Cheng, J. Am. Chem. Soc. 136, 43 (2014).  https://doi.org/10.1021/ja505412p.Google Scholar
  4. 4.
    E. Huynh, B.Y.C. Leung, B.L. Helfield, M. Shakiba, J.A. Gandier, C.S. Jin, E.R. Master, B.C. Wilson, D.E. Goertz, and G. Zheng, Nat. Nanotechnol. 10, 4 (2015).  https://doi.org/10.1038/nnano.2015.25.Google Scholar
  5. 5.
    X. Li, J. Kim, J. Yoon, and X.Y. Chen, Adv. Mater. 29, 23 (2017).  https://doi.org/10.1002/adma.201606857.Google Scholar
  6. 6.
    J.H. Zhao, J.W. Chen, S.N. Ma, Q.Q. Liu, L.X. Huang, X.N. Chen, K.Y. Lou, and W. Wang, Acta Pharm. Sin. B 8, 3 (2018).  https://doi.org/10.1016/j.apsb.2018.03.010.Google Scholar
  7. 7.
    V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, and M.A. Iati, J. Phys. Condens. Matter 29, 20 (2017).  https://doi.org/10.1088/1361-648X/aa60f3.CrossRefGoogle Scholar
  8. 8.
    S. Unser, I. Bruzas, J. He, and L. Sagle, Sensors (Basel) 15, 7 (2015).  https://doi.org/10.3390/s150715684.CrossRefGoogle Scholar
  9. 9.
    L.A. Austin, M.A. Mackey, E.C. Dreaden, and M.A. El-Sayed, Arch. Toxicol. 88, 7 (2014).  https://doi.org/10.1007/s00204-014-1245-3.CrossRefGoogle Scholar
  10. 10.
    O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, and P.A. Midgley, Nature 502, 7469 (2013).  https://doi.org/10.1038/nature12469.CrossRefGoogle Scholar
  11. 11.
    L.Q. Wu and G.F. Payne, Trends Biotechnol. 22, 11 (2004).  https://doi.org/10.1016/j.tibtech.2004.09.008.CrossRefGoogle Scholar
  12. 12.
  13. 13.
    D.C. Kim and D.J. Kang, Sensors 8, 10 (2008).  https://doi.org/10.3390/s8106605.CrossRefGoogle Scholar
  14. 14.
    M.A. Cooper, Anal. Bioanal. Chem. 377, 5 (2003).  https://doi.org/10.1007/s00216-003-2111-y.CrossRefGoogle Scholar
  15. 15.
    F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 6 (2007).  https://doi.org/10.1021/bm061197b.CrossRefGoogle Scholar
  16. 16.
    M. Mrksich and G.M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. (1996).  https://doi.org/10.1146/annurev.bb.25.060196.000415.Google Scholar
  17. 17.
    P.W. Hoffmann, M. Stelzle, and J.F. Rabolt, Langmuir 13, 7 (1997).  https://doi.org/10.1021/la961091+.CrossRefGoogle Scholar
  18. 18.
    A. Bulusu, S.A. Paniagua, B.A. MacLeod, A.K. Sigdel, J.J. Berry, D.C. Olson, S.R. Marder, and S. Graham, Langmuir 29, 12 (2013).  https://doi.org/10.1021/la303354t.CrossRefGoogle Scholar
  19. 19.
    A. Sengupta, C.K. Thai, M.S.R. Sastry, J.F. Matthaei, D.T. Schwartz, E.J. Davis, and F. Baneyx, Langmuir 24, 5 (2008).  https://doi.org/10.1021/la702079e.CrossRefGoogle Scholar
  20. 20.
    M. Hnilova, B.T. Karaca, J. Park, C. Jia, B.R. Wilson, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 109, 5 (2012).  https://doi.org/10.1002/bit.24405.CrossRefGoogle Scholar
  21. 21.
    M. Hnilova, D. Khatayevich, A. Carlson, E.E. Oren, C. Gresswell, S. Zheng, F. Ohuchi, M. Sarikaya, and C. Tamerler, J. Colloid Interface Sci. 365, 1 (2012).  https://doi.org/10.1016/j.jcis.2011.09.006.CrossRefGoogle Scholar
  22. 22.
    E. Yuca, A.Y. Karatas, U.O.S. Seker, M. Gungormus, G. Dinler-Doganay, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 108, 5 (2011).  https://doi.org/10.1002/bit.23041.CrossRefGoogle Scholar
  23. 23.
    M. Sarikaya, C. Tamerler, D.T. Schwartz, and F.O. Baneyx, Annu. Rev. Mater. Res. (2004).  https://doi.org/10.1146/annurev.matsci.34.040203.121025.Google Scholar
  24. 24.
    C. Tamerler, D. Khatayevich, M. Gungormus, T. Kacar, E.E. Oren, M. Hnilova, and M. Sarikaya, Biopolymers 94, 1 (2010).  https://doi.org/10.1002/bip.21368.CrossRefGoogle Scholar
  25. 25.
    C. Tamerler, E.E. Oren, M. Duman, E. Venkatasubramanian, and M. Sarikaya, Langmuir 22, 18 (2006).  https://doi.org/10.1021/la0606897.CrossRefGoogle Scholar
  26. 26.
    C. Tamerler and M. Sarikaya, Acta Biomater. 3, 3 (2007).  https://doi.org/10.1016/j.actbio.2006.10.009.CrossRefGoogle Scholar
  27. 27.
    T.R. Walsh and M.R. Knecht, Chem. Rev. 117, 20 (2017).  https://doi.org/10.1021/acs.chemrev.7b00139.CrossRefGoogle Scholar
  28. 28.
    M. Tanaka, S. Hikiba, K. Yamashita, M. Muto, and M. Okochi, Acta Biomater. (2017).  https://doi.org/10.1016/j.actbio.2016.11.037.Google Scholar
  29. 29.
    M. Munz, A. Bella, S. Ray, N.C. Bell, A.G. Shard, and C. Minelli, Biointerphases 11, 4 (2016).  https://doi.org/10.1116/1.4972417.CrossRefGoogle Scholar
  30. 30.
    B. Adams, D. A. Sarkes, A. S. Finch, and D. Stratis-Cullum, Advances in synthetic peptides reagent discovery, in Proc. SPIE 8710, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, p. 87101B.  https://doi.org/10.1117/12.2017089.
  31. 31.
  32. 32.
    C. Tamerler, S. Dincer, D. Heidel, M. Hadi Zareie, and M. Sarikaya, Prog. Org. Coat. 47, 3 (2003).  https://doi.org/10.1016/j.porgcoat.2003.08.014.CrossRefGoogle Scholar
  33. 33.
    M. Hnilova, C.R. So, E.E. Oren, B.R. Wilson, T. Kacar, C. Tamerler, and M. Sarikaya, Soft Matter 8, 16 (2012).  https://doi.org/10.1039/C2SM06426J.CrossRefGoogle Scholar
  34. 34.
    H.V. Demir, U.O.S. Seker, G. Zengin, E. Mutlugun, E. Sari, C. Tamerler, and M. Sarikaya, ACS Nano 5, 4 (2011).  https://doi.org/10.1021/nn103127v.CrossRefGoogle Scholar
  35. 35.
    Y. Zhou, M.L. Snead, and C. Tamerler, Nanomedicine 11, 2 (2015).  https://doi.org/10.1016/j.nano.2014.10.003.CrossRefGoogle Scholar
  36. 36.
    H. Yazici, G. Habib, K. Boone, M. Urgen, F.S. Utku, and C. Tamerler, Mater. Sci. Eng. C (2019).  https://doi.org/10.1016/j.msec.2018.09.030.Google Scholar
  37. 37.
    D.T. Yucesoy, M. Hnilova, K. Boone, P.M. Arnold, M.L. Snead, and C. Tamerler, JOM (Warrendale, Pa.: 1989) 67, 4 (2015).  https://doi.org/10.1007/s11837-015-1350-7.Google Scholar
  38. 38.
    X. Wu, S. Mahalingam, S.K. VanOosten, C. Wisdom, C. Tamerler, and M. Edirisinghe, Macromol. Biosci. 17, 2 (2017).  https://doi.org/10.1002/mabi.201600270.Google Scholar
  39. 39.
    S.Q. Zhang, B.T. Karaca, S.K. VanOosten, E. Yuca, S. Mahalingam, M. Edirisinghe, and C. Tamerler, Macromol. Rapid Commun. 36, 14 (2015).  https://doi.org/10.1002/marc.201500174.Google Scholar
  40. 40.
    P.L. Heseltine, J. Ahmed, and M. Edirisinghe, Macromol. Mater. Eng. 303, 9 (2018).  https://doi.org/10.1002/mame.201800218.Google Scholar
  41. 41.
    S.H. Hashimdeen, M. Miodownik, and M.J. Edirisinghe, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 6 (2013).  https://doi.org/10.1016/j.msec.2013.04.020.CrossRefGoogle Scholar
  42. 42.
    M. Hnilova, E.E. Oren, U.O.S. Seker, B.R. Wilson, S. Collino, J.S. Evans, C. Tamerler, and M. Sarikaya, Langmuir 24, 21 (2008).  https://doi.org/10.1021/la801468c.CrossRefGoogle Scholar
  43. 43.
    M. Hnilova, X. Liu, E. Yuca, C. Jia, B. Wilson, A.Y. Karatas, C. Gresswell, F. Ohuchi, K. Kitamura, and C. Tamerler, ACS Appl. Mater. Interfaces 4, 4 (2012).  https://doi.org/10.1021/am300177t.CrossRefGoogle Scholar
  44. 44.
    B.H. Shilton, M.M. Flocco, M. Nilsson, and S.L. Mowbray, J. Mol. Biol. 264, 2 (1996).  https://doi.org/10.1006/jmbi.1996.0645.Google Scholar
  45. 45.
    M.W. Allen, R.J. Urbauer, A. Zaidi, T.D. Williams, J.L. Urbauer, and C.K. Johnson, Anal. Biochem. 325, 2 (2004).CrossRefGoogle Scholar
  46. 46.
    N.C.H. Le, M. Gel, Y.G. Zhu, H. Dacres, A. Anderson, and S.C. Trowell, Biosens. Bioelectron. (2014).  https://doi.org/10.1016/j.bios.2014.06.032.Google Scholar
  47. 47.
    M. Fehr, W.B. Frommer, and S. Lalonde, Proc. Natl. Acad. Sci. USA 99, 15 (2002).  https://doi.org/10.1073/pnas.142089199.CrossRefGoogle Scholar
  48. 48.
    J.S. Ha, J.J. Song, Y.M. Lee, S.J. Kim, J.H. Sohn, C.S. Shin, and S.G. Lee, Appl. Environ. Microbiol. 73, 22 (2007).  https://doi.org/10.1128/aem.01080-07.CrossRefGoogle Scholar
  49. 49.
    A. Dias, D. Kingsley, and D. Corr, Biosensors 4, 2 (2014).CrossRefGoogle Scholar
  50. 50.
    S.A. Ruiz and C.S. Chen, Soft Matter 3, 2 (2007).  https://doi.org/10.1039/b613349e.CrossRefGoogle Scholar
  51. 51.
    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H.R. Bosshard, and H. Biebuyck, Langmuir 14, 9 (1998).  https://doi.org/10.1021/la980037l.CrossRefGoogle Scholar
  52. 52.
    T. Kacar, J. Ray, M. Gungormus, E.E. Oren, C. Tamerler, and M. Sarikaya, Adv. Mater. 21, 3 (2009).  https://doi.org/10.1002/adma.200801877.Google Scholar
  53. 53.
    S.A. Lange, V. Benes, D.P. Kern, J.K.H. Horber, and A. Bernard, Anal. Chem. 76, 6 (2004).  https://doi.org/10.1021/ac035127w.CrossRefGoogle Scholar
  54. 54.
    M. Mrksich, L.E. Dike, J. Tien, D.E. Ingber, and G.M. Whitesides, Exp. Cell Res. 235, 2 (1997).  https://doi.org/10.1006/excr.1997.3668.CrossRefGoogle Scholar
  55. 55.
    S. Unser, S. Holcomb, R. Cary, and L. Sagle, Sensors 17, 2 (2017).  https://doi.org/10.3390/s17020378.CrossRefGoogle Scholar
  56. 56.
    D. Joshi and R.K. Soni, Plasmonics 13, 4 (2018).  https://doi.org/10.1007/s11468-017-0633-y.CrossRefGoogle Scholar
  57. 57.
    M. Ben Haddada, D. Hu, M. Salmain, L. Zhang, C. Peng, Y. Wang, B. Liedberg, and S. Boujday, Anal. Bioanal. Chem. 409, 26 (2017).  https://doi.org/10.1007/s00216-017-0563-8.CrossRefGoogle Scholar
  58. 58.
    J.R. Lakowicz, Anal. Biochem. 337, 2 (2005).  https://doi.org/10.1016/j.ab.2004.11.026.CrossRefGoogle Scholar
  59. 59.
    A.C. Pineda and D. Ronis, J. Chem. Phys. 83, 10 (1985).  https://doi.org/10.1063/1.449695.CrossRefGoogle Scholar
  60. 60.
    E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Möller, and D.I. Gittins, Phys. Rev. Lett. 89, 20 (2002).CrossRefGoogle Scholar
  61. 61.
    E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A. Muñoz Javier, and W.J. Parak, Nano Lett. 5, 4 (2005).  https://doi.org/10.1021/nl0480969.CrossRefGoogle Scholar
  62. 62.
    M. Swierczewska, S. Lee, and X. Chen, Phys. Chem. Chem. Phys. 13, 21 (2011).  https://doi.org/10.1039/C0CP02967J.CrossRefGoogle Scholar
  63. 63.
    A. Leitner, M.E. Lippitsch, S. Draxler, M. Riegler, and F.R. Aussenegg, Appl. Phys. B 36, 2 (1985).  https://doi.org/10.1007/bf00694696.CrossRefGoogle Scholar
  64. 64.
    G. Schneider, G. Decher, N. Nerambourg, R. Praho, M.H.V. Werts, and M. Blanchard-Desce, Nano Lett. 6, 3 (2006).  https://doi.org/10.1021/nl052441s.CrossRefGoogle Scholar
  65. 65.
    D. Cheng and Q.-H. Xu, Chem. Commun. (2007).  https://doi.org/10.1039/b612401a.Google Scholar
  66. 66.
    X. Wang, F. He, X. Zhu, F. Tang, and L. Li, Sci. Rep. (2014).  https://doi.org/10.1038/srep04406.Google Scholar
  67. 67.
    Z. Weihua, D. Fei, L. Wen-Di, W. Yuxuan, H. Jonathan, and Y.C. Stephen, Nanotechnology 23, 22 (2012).Google Scholar
  68. 68.
    F. Tang, C. Wang, X. Wang, and L. Li, Colloids Surf. Physicochem. Eng. Asp. (2015).  https://doi.org/10.1016/j.colsurfa.2015.09.010.Google Scholar
  69. 69.
    B. Choi, M. Iwanaga, H.T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, Chem. Commun. 51, 57 (2015).  https://doi.org/10.1039/c5cc04426j.Google Scholar
  70. 70.
    G. Mani, D.M. Johnson, D. Marton, V.L. Dougherty, M.D. Feldman, D. Patel, A.A. Ayon, and C.M. Agrawal, Langmuir 24, 13 (2008).  https://doi.org/10.1021/la8003646.CrossRefGoogle Scholar
  71. 71.
    N. Duran, M. Duran, M.B. de Jesus, A.B. Seabra, W.J. Favaro, and G. Nakazato, Nanomed. Nanotechnol. Biol. Med. 12, 3 (2016).  https://doi.org/10.1016/j.nano.2015.11.016.CrossRefGoogle Scholar
  72. 72.
    X.F. Zhang, Z.G. Liu, W. Shen, and S. Gurunathan, Int. J. Mol. Sci. 17, 9 (2016).  https://doi.org/10.3390/ijms17091534.Google Scholar
  73. 73.
    H.H. Lara, E.N. Garza-Trevino, L. Ixtepan-Turrent, and D.K. Singh, J. Nanobiotechnol. (2011).  https://doi.org/10.1186/1477-3155-9-30.Google Scholar
  74. 74.
    X.X. Tan, J.P. Wang, X.J. Pang, L. Liu, Q. Sun, Q. You, F.P. Tan, and N. Li, ACS Appl. Mater. Interfaces 8, 51 (2016).  https://doi.org/10.1021/acsami.6b11262.Google Scholar
  75. 75.
    X.Y. Zhang, Cell Biochem. Biophys. 72, 3 (2015).  https://doi.org/10.1007/s12013-015-0529-4.Google Scholar
  76. 76.
    Q. Zhang, Y. Gong, X.J. Guo, P. Zhang, and C.F. Ding, ACS Appl. Mater. Interfaces 10, 41 (2018).  https://doi.org/10.1021/acsami.8b12897.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute for Bioengineering ResearchUniversity of KansasLawrenceUSA
  2. 2.Molecular Biology and GeneticsYildiz Technical UniversityIstanbulTurkey
  3. 3.Bioengineering ProgramUniversity of KansasLawrenceUSA
  4. 4.Mechanical EngineeringUniversity of KansasLawrenceUSA

Personalised recommendations