pp 1–10 | Cite as

Self-Assembled Recombinant Proteins on Metallic Nanoparticles as Bimodal Imaging Probes

  • Esra Yuca
  • Candan TamerlerEmail author
Protein-Based Structural Materials


Combining multiple modalities is central to developing the new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owing to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self-assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous for assembling selective functional nano-entities or proteins onto nanoparticle surfaces. Herein we explored the formation of self-assembled hybrid metallic nano-architectures composed of gold and silver nanoparticles with fluorescent proteins for use as bimodal imaging probes. We employed metal-binding peptide-based assembly to self-assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biologic tissues and provide a high signal-to-noise ratio and sensitivity.



This study has been supported by The Scientific and Technological Research Council of Turkey (TUBITAK) BIDEB 2219 Post-Doctoral Research Project. This investigation was supported by research Grant R01 DE025476 from the National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892.


  1. 1.
    R. Misri, Multimodality imaging, in Molecular Imaging Techniques: New Frontiers (2013), pp. 162–176.
  2. 2.
    A. Louie, Chem. Rev. 110, 5 (2010). Scholar
  3. 3.
    Q.L. Fan, K. Cheng, X. Hu, X.W. Ma, R.P. Zhang, M. Yang, X.M. Lu, L. Xing, W. Huang, S.S. Gambhir, and Z. Cheng, J. Am. Chem. Soc. 136, 43 (2014). Scholar
  4. 4.
    E. Huynh, B.Y.C. Leung, B.L. Helfield, M. Shakiba, J.A. Gandier, C.S. Jin, E.R. Master, B.C. Wilson, D.E. Goertz, and G. Zheng, Nat. Nanotechnol. 10, 4 (2015). Scholar
  5. 5.
    X. Li, J. Kim, J. Yoon, and X.Y. Chen, Adv. Mater. 29, 23 (2017). Scholar
  6. 6.
    J.H. Zhao, J.W. Chen, S.N. Ma, Q.Q. Liu, L.X. Huang, X.N. Chen, K.Y. Lou, and W. Wang, Acta Pharm. Sin. B 8, 3 (2018). Scholar
  7. 7.
    V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, and M.A. Iati, J. Phys. Condens. Matter 29, 20 (2017). Scholar
  8. 8.
    S. Unser, I. Bruzas, J. He, and L. Sagle, Sensors (Basel) 15, 7 (2015). Scholar
  9. 9.
    L.A. Austin, M.A. Mackey, E.C. Dreaden, and M.A. El-Sayed, Arch. Toxicol. 88, 7 (2014). Scholar
  10. 10.
    O. Nicoletti, F. de la Pena, R.K. Leary, D.J. Holland, C. Ducati, and P.A. Midgley, Nature 502, 7469 (2013). Scholar
  11. 11.
    L.Q. Wu and G.F. Payne, Trends Biotechnol. 22, 11 (2004). Scholar
  12. 12.
  13. 13.
    D.C. Kim and D.J. Kang, Sensors 8, 10 (2008). Scholar
  14. 14.
    M.A. Cooper, Anal. Bioanal. Chem. 377, 5 (2003). Scholar
  15. 15.
    F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 6 (2007). Scholar
  16. 16.
    M. Mrksich and G.M. Whitesides, Annu. Rev. Biophys. Biomol. Struct. (1996). Scholar
  17. 17.
    P.W. Hoffmann, M. Stelzle, and J.F. Rabolt, Langmuir 13, 7 (1997). Scholar
  18. 18.
    A. Bulusu, S.A. Paniagua, B.A. MacLeod, A.K. Sigdel, J.J. Berry, D.C. Olson, S.R. Marder, and S. Graham, Langmuir 29, 12 (2013). Scholar
  19. 19.
    A. Sengupta, C.K. Thai, M.S.R. Sastry, J.F. Matthaei, D.T. Schwartz, E.J. Davis, and F. Baneyx, Langmuir 24, 5 (2008). Scholar
  20. 20.
    M. Hnilova, B.T. Karaca, J. Park, C. Jia, B.R. Wilson, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 109, 5 (2012). Scholar
  21. 21.
    M. Hnilova, D. Khatayevich, A. Carlson, E.E. Oren, C. Gresswell, S. Zheng, F. Ohuchi, M. Sarikaya, and C. Tamerler, J. Colloid Interface Sci. 365, 1 (2012). Scholar
  22. 22.
    E. Yuca, A.Y. Karatas, U.O.S. Seker, M. Gungormus, G. Dinler-Doganay, M. Sarikaya, and C. Tamerler, Biotechnol. Bioeng. 108, 5 (2011). Scholar
  23. 23.
    M. Sarikaya, C. Tamerler, D.T. Schwartz, and F.O. Baneyx, Annu. Rev. Mater. Res. (2004). Scholar
  24. 24.
    C. Tamerler, D. Khatayevich, M. Gungormus, T. Kacar, E.E. Oren, M. Hnilova, and M. Sarikaya, Biopolymers 94, 1 (2010). Scholar
  25. 25.
    C. Tamerler, E.E. Oren, M. Duman, E. Venkatasubramanian, and M. Sarikaya, Langmuir 22, 18 (2006). Scholar
  26. 26.
    C. Tamerler and M. Sarikaya, Acta Biomater. 3, 3 (2007). Scholar
  27. 27.
    T.R. Walsh and M.R. Knecht, Chem. Rev. 117, 20 (2017). Scholar
  28. 28.
    M. Tanaka, S. Hikiba, K. Yamashita, M. Muto, and M. Okochi, Acta Biomater. (2017). Scholar
  29. 29.
    M. Munz, A. Bella, S. Ray, N.C. Bell, A.G. Shard, and C. Minelli, Biointerphases 11, 4 (2016). Scholar
  30. 30.
    B. Adams, D. A. Sarkes, A. S. Finch, and D. Stratis-Cullum, Advances in synthetic peptides reagent discovery, in Proc. SPIE 8710, Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XIV, p. 87101B.
  31. 31.
  32. 32.
    C. Tamerler, S. Dincer, D. Heidel, M. Hadi Zareie, and M. Sarikaya, Prog. Org. Coat. 47, 3 (2003). Scholar
  33. 33.
    M. Hnilova, C.R. So, E.E. Oren, B.R. Wilson, T. Kacar, C. Tamerler, and M. Sarikaya, Soft Matter 8, 16 (2012). Scholar
  34. 34.
    H.V. Demir, U.O.S. Seker, G. Zengin, E. Mutlugun, E. Sari, C. Tamerler, and M. Sarikaya, ACS Nano 5, 4 (2011). Scholar
  35. 35.
    Y. Zhou, M.L. Snead, and C. Tamerler, Nanomedicine 11, 2 (2015). Scholar
  36. 36.
    H. Yazici, G. Habib, K. Boone, M. Urgen, F.S. Utku, and C. Tamerler, Mater. Sci. Eng. C (2019). Scholar
  37. 37.
    D.T. Yucesoy, M. Hnilova, K. Boone, P.M. Arnold, M.L. Snead, and C. Tamerler, JOM (Warrendale, Pa.: 1989) 67, 4 (2015). Scholar
  38. 38.
    X. Wu, S. Mahalingam, S.K. VanOosten, C. Wisdom, C. Tamerler, and M. Edirisinghe, Macromol. Biosci. 17, 2 (2017). Scholar
  39. 39.
    S.Q. Zhang, B.T. Karaca, S.K. VanOosten, E. Yuca, S. Mahalingam, M. Edirisinghe, and C. Tamerler, Macromol. Rapid Commun. 36, 14 (2015). Scholar
  40. 40.
    P.L. Heseltine, J. Ahmed, and M. Edirisinghe, Macromol. Mater. Eng. 303, 9 (2018). Scholar
  41. 41.
    S.H. Hashimdeen, M. Miodownik, and M.J. Edirisinghe, Mater. Sci. Eng. C Mater. Biol. Appl. 33, 6 (2013). Scholar
  42. 42.
    M. Hnilova, E.E. Oren, U.O.S. Seker, B.R. Wilson, S. Collino, J.S. Evans, C. Tamerler, and M. Sarikaya, Langmuir 24, 21 (2008). Scholar
  43. 43.
    M. Hnilova, X. Liu, E. Yuca, C. Jia, B. Wilson, A.Y. Karatas, C. Gresswell, F. Ohuchi, K. Kitamura, and C. Tamerler, ACS Appl. Mater. Interfaces 4, 4 (2012). Scholar
  44. 44.
    B.H. Shilton, M.M. Flocco, M. Nilsson, and S.L. Mowbray, J. Mol. Biol. 264, 2 (1996). Scholar
  45. 45.
    M.W. Allen, R.J. Urbauer, A. Zaidi, T.D. Williams, J.L. Urbauer, and C.K. Johnson, Anal. Biochem. 325, 2 (2004).CrossRefGoogle Scholar
  46. 46.
    N.C.H. Le, M. Gel, Y.G. Zhu, H. Dacres, A. Anderson, and S.C. Trowell, Biosens. Bioelectron. (2014). Scholar
  47. 47.
    M. Fehr, W.B. Frommer, and S. Lalonde, Proc. Natl. Acad. Sci. USA 99, 15 (2002). Scholar
  48. 48.
    J.S. Ha, J.J. Song, Y.M. Lee, S.J. Kim, J.H. Sohn, C.S. Shin, and S.G. Lee, Appl. Environ. Microbiol. 73, 22 (2007). Scholar
  49. 49.
    A. Dias, D. Kingsley, and D. Corr, Biosensors 4, 2 (2014).CrossRefGoogle Scholar
  50. 50.
    S.A. Ruiz and C.S. Chen, Soft Matter 3, 2 (2007). Scholar
  51. 51.
    A. Bernard, E. Delamarche, H. Schmid, B. Michel, H.R. Bosshard, and H. Biebuyck, Langmuir 14, 9 (1998). Scholar
  52. 52.
    T. Kacar, J. Ray, M. Gungormus, E.E. Oren, C. Tamerler, and M. Sarikaya, Adv. Mater. 21, 3 (2009). Scholar
  53. 53.
    S.A. Lange, V. Benes, D.P. Kern, J.K.H. Horber, and A. Bernard, Anal. Chem. 76, 6 (2004). Scholar
  54. 54.
    M. Mrksich, L.E. Dike, J. Tien, D.E. Ingber, and G.M. Whitesides, Exp. Cell Res. 235, 2 (1997). Scholar
  55. 55.
    S. Unser, S. Holcomb, R. Cary, and L. Sagle, Sensors 17, 2 (2017). Scholar
  56. 56.
    D. Joshi and R.K. Soni, Plasmonics 13, 4 (2018). Scholar
  57. 57.
    M. Ben Haddada, D. Hu, M. Salmain, L. Zhang, C. Peng, Y. Wang, B. Liedberg, and S. Boujday, Anal. Bioanal. Chem. 409, 26 (2017). Scholar
  58. 58.
    J.R. Lakowicz, Anal. Biochem. 337, 2 (2005). Scholar
  59. 59.
    A.C. Pineda and D. Ronis, J. Chem. Phys. 83, 10 (1985). Scholar
  60. 60.
    E. Dulkeith, A.C. Morteani, T. Niedereichholz, T.A. Klar, J. Feldmann, S.A. Levi, F.C.J.M. van Veggel, D.N. Reinhoudt, M. Möller, and D.I. Gittins, Phys. Rev. Lett. 89, 20 (2002).CrossRefGoogle Scholar
  61. 61.
    E. Dulkeith, M. Ringler, T.A. Klar, J. Feldmann, A. Muñoz Javier, and W.J. Parak, Nano Lett. 5, 4 (2005). Scholar
  62. 62.
    M. Swierczewska, S. Lee, and X. Chen, Phys. Chem. Chem. Phys. 13, 21 (2011). Scholar
  63. 63.
    A. Leitner, M.E. Lippitsch, S. Draxler, M. Riegler, and F.R. Aussenegg, Appl. Phys. B 36, 2 (1985). Scholar
  64. 64.
    G. Schneider, G. Decher, N. Nerambourg, R. Praho, M.H.V. Werts, and M. Blanchard-Desce, Nano Lett. 6, 3 (2006). Scholar
  65. 65.
    D. Cheng and Q.-H. Xu, Chem. Commun. (2007). Scholar
  66. 66.
    X. Wang, F. He, X. Zhu, F. Tang, and L. Li, Sci. Rep. (2014). Scholar
  67. 67.
    Z. Weihua, D. Fei, L. Wen-Di, W. Yuxuan, H. Jonathan, and Y.C. Stephen, Nanotechnology 23, 22 (2012).Google Scholar
  68. 68.
    F. Tang, C. Wang, X. Wang, and L. Li, Colloids Surf. Physicochem. Eng. Asp. (2015). Scholar
  69. 69.
    B. Choi, M. Iwanaga, H.T. Miyazaki, Y. Sugimoto, A. Ohtake, and K. Sakoda, Chem. Commun. 51, 57 (2015). Scholar
  70. 70.
    G. Mani, D.M. Johnson, D. Marton, V.L. Dougherty, M.D. Feldman, D. Patel, A.A. Ayon, and C.M. Agrawal, Langmuir 24, 13 (2008). Scholar
  71. 71.
    N. Duran, M. Duran, M.B. de Jesus, A.B. Seabra, W.J. Favaro, and G. Nakazato, Nanomed. Nanotechnol. Biol. Med. 12, 3 (2016). Scholar
  72. 72.
    X.F. Zhang, Z.G. Liu, W. Shen, and S. Gurunathan, Int. J. Mol. Sci. 17, 9 (2016). Scholar
  73. 73.
    H.H. Lara, E.N. Garza-Trevino, L. Ixtepan-Turrent, and D.K. Singh, J. Nanobiotechnol. (2011). Scholar
  74. 74.
    X.X. Tan, J.P. Wang, X.J. Pang, L. Liu, Q. Sun, Q. You, F.P. Tan, and N. Li, ACS Appl. Mater. Interfaces 8, 51 (2016). Scholar
  75. 75.
    X.Y. Zhang, Cell Biochem. Biophys. 72, 3 (2015). Scholar
  76. 76.
    Q. Zhang, Y. Gong, X.J. Guo, P. Zhang, and C.F. Ding, ACS Appl. Mater. Interfaces 10, 41 (2018). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute for Bioengineering ResearchUniversity of KansasLawrenceUSA
  2. 2.Molecular Biology and GeneticsYildiz Technical UniversityIstanbulTurkey
  3. 3.Bioengineering ProgramUniversity of KansasLawrenceUSA
  4. 4.Mechanical EngineeringUniversity of KansasLawrenceUSA

Personalised recommendations