, Volume 70, Issue 4, pp 450–455 | Cite as

Structural Evolution of Q-Carbon and Nanodiamonds

  • Siddharth Gupta
  • Anagh Bhaumik
  • Ritesh Sachan
  • Jagdish Narayan
Advanced Characterization of Interfaces and Thin Films


This article provides insights pertaining to the first-order phase transformation involved in the growth of densely packed Q-carbon and nanodiamonds by nanosecond laser melting and quenching of diamond-like carbon (DLC) thin films. DLC films with different sp3 content were melted rapidly in a controlled way in super-undercooled state and quenched, leading to formation of distinct nanostructures, i.e., nanodiamonds, Q-carbon, and Q-carbon nanocomposites. This analysis provides direct evidence of the dependence of the super-undercooling on the structural evolution of Q-carbon. Finite element heat flow calculations showed that the super-undercooling varies monotonically with the sp3 content. The phenomenon of solid–liquid interfacial instability during directional solidification from the melt state is studied in detail. The resulting lateral segregation leads to formation of cellular filamentary Q-carbon nanostructures. The dependence of the cell size and wavelength at the onset of instability on the sp3 content of DLC thin films was modeled based on perturbation theory.



Funding was provided by National Science Foundation (Grant Nos. DMR-1735695 and DMR-1560838).


  1. 1.
    J. Narayan, V. Godbole, and C. White, Science 252, 416 (1991).CrossRefGoogle Scholar
  2. 2.
    J. Narayan and A. Bhaumik, J. Appl. Phys. 118, 215303 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Narayan and A. Bhaumik, Mater. Res. Lett. 4, 118 (2016).CrossRefGoogle Scholar
  4. 4.
    S. Gupta, R. Sachan, A. Bhaumik, and J. Narayan, Unpublished research (2017).Google Scholar
  5. 5.
    A. Bhaumik, R. Sachan, and J. Narayan, J. Appl. Phys. 122, 045301 (2017).CrossRefGoogle Scholar
  6. 6.
    J. Narayan and A. Bhaumik, Mater. Res. Lett. 5, 242 (2016).CrossRefGoogle Scholar
  7. 7.
    H. Kumomi, Appl. Phys. Lett. 83, 434 (2003).CrossRefGoogle Scholar
  8. 8.
    K. Jackson, Surface Modification and Alloying (Berlin: Springer, 1983), pp. 51–79.CrossRefGoogle Scholar
  9. 9.
    J. Narayan, J. Appl. Phys. 53, 8607 (1982).CrossRefGoogle Scholar
  10. 10.
    F. Spaepen, D. Turnbull, J. Poate, and J. Mayer, Laser Annealing of Semiconductors (New York: Academic, 1982), pp. 15–42.CrossRefGoogle Scholar
  11. 11.
  12. 12.
    A. Cullis, N. Chew, H. Webber, and D.J. Smith, J. Cryst. Growth 68, 624 (1984).CrossRefGoogle Scholar
  13. 13.
    R.K. Singh and J. Narayan, Mater. Sci. Eng. B 3, 217 (1989).CrossRefGoogle Scholar
  14. 14.
    M. Shamsa, W. Liu, A. Balandin, C. Casiraghi, W. Milne, and A. Ferrari, Appl. Phys. Lett. 89, 161921 (2006).CrossRefGoogle Scholar
  15. 15.
    B. Larson, J. Tischler, and D. Mills, J. Mater. Res. 1, 144 (1986).CrossRefGoogle Scholar
  16. 16.
    J. Narayan, H. Naramoto, and C. White, J. Appl. Phys. 53, 912 (1982).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Siddharth Gupta
    • 1
  • Anagh Bhaumik
    • 1
  • Ritesh Sachan
    • 1
    • 2
  • Jagdish Narayan
    • 1
  1. 1.Department of Materials Science and Engineering, Centennial CampusNorth Carolina State UniversityRaleighUSA
  2. 2.Materials Science DivisionArmy Research OfficeResearch Triangle ParkUSA

Personalised recommendations