, Volume 70, Issue 4, pp 456–463 | Cite as

Synthesis and Characterization of Quenched and Crystalline Phases: Q-Carbon, Q-BN, Diamond and Phase-Pure c-BN

  • Anagh Bhaumik
  • Jagdish Narayan
Advanced Characterization of Interfaces and Thin Films


We report the synthesis and characterization of quenched (Q-carbon and Q-BN) and crystalline (diamond and c-BN) phases using a non-equilibrium technique. These phases are formed as a result of the melting and subsequent quenching of amorphous carbon and nanocrystalline h-BN in a super undercooled state by using high-power nanosecond laser pulses. Pulsed laser annealing also leads to the formation of nanoneedles, microneedles and single-crystal thin films of diamond and c-BN. This formation is dependent on the nucleation and growth times, which are controlled by laser energy density and thermal conductivities of substrate and as-deposited thin film. The diamond nuclei present in the Q-carbon structure (~ 80% sp3) can also be grown to larger sizes using the equilibrium hot filament chemical vapor deposition process. The texture of diamond and c-BN crystals is 〈111〉 under epitaxial growth and 〈110〉 under rapid unseeded crystallization. Our nanosecond laser processing opens up a roadmap to the fabrication of novel phases on heat-sensitive substrates.



Funding was provided by National Science Foundation (Grant No. DMR-1560838).

Supplementary material

11837_2017_2712_MOESM1_ESM.pdf (87 kb)
Supplementary material 1 (PDF 86 kb)


  1. 1.
    M.S. Dresselhaus and G. Dresselhaus, Nanostruct. Mater. 9, 33 (1997).CrossRefGoogle Scholar
  2. 2.
    R. Narayan, Diamond-Based Materials for Biomedical Applications (Elsevier: Woodhead Publishing, 2013).CrossRefGoogle Scholar
  3. 3.
    R.Z. Khaliullin, H. Eshet, T.D. Kühne, J. Behler, and M. Parrinello, Nat. Mater. 10, 693 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
  5. 5.
    V. Ischenko, Y.S. Jang, M. Kormann, P. Greil, N. Popovska, C. Zollfrank, and J. Woltersdorf, Carbon 49, 1189 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Luo, X. Qi, C. Pan, and W. Yang, Sci. Rep. 5, 13879 (2015).CrossRefGoogle Scholar
  7. 7.
    Y.Q. Zhu, T. Sekine, T. Kobayashi, E. Takazawa, M. Terrones, and H. Terrones, Chem. Phys. Lett. 287, 689 (1998).CrossRefGoogle Scholar
  8. 8.
    H. Yusa, Diam. Relat. Mater. 11, 87 (2002).CrossRefGoogle Scholar
  9. 9.
    L.T. Sun, J.L. Gong, D.Z. Zhu, Z.Y. Zhu, and S.X. He, Adv. Mater. 16, 1849 (2004).CrossRefGoogle Scholar
  10. 10.
    W.R. DeVries, Analysis of Material Removal Processes (New York: Springer, 1992).CrossRefGoogle Scholar
  11. 11.
    H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, and R. Kalyanaraman, Nanotechnology 21, 155601 (2010).CrossRefGoogle Scholar
  12. 12.
    J. Narayan, V.P. Godbole, and C.W. White, Science 252, 416 (1991).CrossRefGoogle Scholar
  13. 13.
    R. Sachan, S. Yadavali, N. Shirato, H. Krishna, V. Ramos, G. Duscher, S.J. Pennycook, A.K. Gangopadhyay, H. Garcia, and R. Kalyanaraman, Nanotechnology 23, 275604 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Yadavali, M. Khenner, and R. Kalyanaraman, J. Mater. Res. 28, 1715 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Narayan and A. Bhaumik, J. Appl. Phys. 118, 215303 (2015).CrossRefGoogle Scholar
  16. 16.
    J. Narayan and A. Bhaumik, Mater. Res. Lett. 4, 118 (2016).CrossRefGoogle Scholar
  17. 17.
    J. Narayan and A. Bhaumik, APL Mater. 4, 20701 (2016).CrossRefGoogle Scholar
  18. 18.
    J. Narayan, A.R. Srivatsa, M. Peters, S. Yokota, and K.V. Ravi, Appl. Phys. Lett. 53, 1823 (1988).CrossRefGoogle Scholar
  19. 19.
    B.C. Larson, J.Z. Tischler, and D.M. Mills, J. Mater. Res. 1, 144 (1986).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Department of Materials Science and Engineering, Centennial CampusNorth Carolina State UniversityRaleighUSA

Personalised recommendations