, Volume 70, Issue 3, pp 336–342 | Cite as

Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

  • Ernesto E. Covarrubias
  • Mohsen EshraghiEmail author
Additive Manufacturing


Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the “stair-step” effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.



The authors would like to thank Dr. John Lee for his assistance with the optical surface analysis and Dr. Maricela Maldonado for her assistance with SEM.


  1. 1.
    ASTM International, in F2792-12aStandard Terminology for Additive Manufacturing Technologies (2013).Google Scholar
  2. 2.
    I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies (Berlin: Springer, 2010).CrossRefGoogle Scholar
  3. 3.
    G. Pyka, A. Burakowski, G. Kerckhofs, M. Moesen, S. Van Bael, J. Schrooten, and M. Wevers, Adv. Eng. Mater. 14, 363 (2012).CrossRefGoogle Scholar
  4. 4.
    D. Whitehouse, Profile and Areal (3D) Parameter Characterization (Amsterdam: Elsevier, 2002).CrossRefGoogle Scholar
  5. 5.
    C. Tuck and L. Blunt, Surf. Topogr. Metrol. Prop. 4, 20201 (2016).CrossRefGoogle Scholar
  6. 6.
    A. Townsend, N. Senin, L. Blunt, R.K. Leach, and J.S. Taylor, Precis. Eng. 46, 34 (2016).CrossRefGoogle Scholar
  7. 7.
    R.I. Campbell, M. Martorelli, and H.S. Lee, CAD Comput. Aided Des. 34, 717 (2002).CrossRefGoogle Scholar
  8. 8.
    D. Ahn, H. Kim, and S. Lee, J. Mater. Process. Technol. 209, 664 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Diatlov, D. Buchbinder, W. Meiners, K. Wissenbach, and J. Bültmann, Innov. Dev. Virtual Phys. Prototyp. 53, 595 (2012).Google Scholar
  10. 10.
    G. Strano, L. Hao, R.M. Everson, and K.E. Evans, J. Mater. Process. Technol. 213, 589 (2013).CrossRefGoogle Scholar
  11. 11.
    A.B. Spierings, N. Herres, and G. Levy, Rapid Prototyp. J. 17, 195 (2011).CrossRefGoogle Scholar
  12. 12.
    A. Safdar, H.Z. He, L. Wei, A. Snis, and L.E. Chavez de Paz, Rapid Prototyp. J. 18, 401 (2012).CrossRefGoogle Scholar
  13. 13.
    K. Abd-Elghany and D.L. Bourell, Rapid Prototyp. J. 18, 420 (2012).CrossRefGoogle Scholar
  14. 14.
    M. Vetterli, M. Schmid, and K. Wegener, in Proceedings of Fraunhofer Direct Digital Manufacturing Conference (2014), pp. 1–6.Google Scholar
  15. 15.
    M. Król, L.A. Dobrzański, Ł. Reimann, and I. Czaja, World Acad. Mater. Manuf. Eng. 60, 87 (2013).Google Scholar
  16. 16.
    L. Castillo, Study about the Rapid Manufacturing of Complex Parts of Stainless Steel and Titanium, TNO Report with the collaboration of AIMME (2005).Google Scholar
  17. 17.
    Y. Ning, Y.S. Wong, J.Y.H. Fuh, and H.T. Loh, IEEE Trans. Autom. Sci. Eng. 3, 73 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Abdel Ghany and S.F. Moustafa, Rapid Prototyp. J. 12, 86 (2006).CrossRefGoogle Scholar
  19. 19.
    J. Delgado, J. Ciurana, C. Reguant, and B. Cavallini, Innov. Dev. Des. Manuf. Adv. Res. Virtual Rapid Prototyp. 1, 349 (2010).Google Scholar
  20. 20.
    M. Badrossamay and T.H.C. Childs, in International Solid Freeform Fabrication Symposium (2006), p. 268.Google Scholar
  21. 21.
    A. Triantaphyllou, C.L. Giusca, G.D. Macaulay, F. Roerig, M. Hoebel, R.K. Leach, B. Tomita, and K.A. Milne, Surf. Topogr. Metrol. Prop. 3, 24002 (2015).CrossRefGoogle Scholar
  22. 22.
    A. Temmler, E. Willenborg, and K. Wissenbach, in Proceedings of SPIE (2012), p. 82430W.Google Scholar
  23. 23.
    EOS GmbH—Electro Optical Systems, Material Data Sheet EOS NickelAlloy IN718 Material Data Sheet Technical Data (2011).Google Scholar
  24. 24.
    J.C. Fox, S.P. Moylan, and B.M. Lane, Proc. CIRP 45, 131 (2016).CrossRefGoogle Scholar
  25. 25.
    S. Moylan, in American Society for Precision Engineering 2015 Spring Topical Meeting (2015), pp. 100–105.Google Scholar
  26. 26.
    D. Nečas and P. Klapetek, Open Phys. 10, 181 (2012).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringCalifornia State University, Los AngelesLos AngelesUSA

Personalised recommendations