Advertisement

JOM

, Volume 71, Issue 1, pp 256–263 | Cite as

Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

  • Reza MahmoodianEmail author
  • N. Syahira M. Annuar
  • Ghader FarajiEmail author
  • Nadia Dayana Bahar
  • Bushroa Abd Razak
  • Mahdi Sparham
Materials in Nanomedicine and Bioengineering

Abstract

This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

Notes

Acknowledgements

The authors would like to acknowledge the University of Malaya and Malaysia Ministry of Higher Education, FRGS Grant (FP059-2015A) for providing grant and facilities.

Supplementary material

11837_2017_2672_MOESM1_ESM.pdf (613 kb)
Supplementary material 1 (PDF 613 kb)

References

  1. 1.
    B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter, Acta Mater. 96, 258 (2015).Google Scholar
  2. 2.
    H. Abdolvand, H. Sohrabi, G. Faraji, and F. Yusof, Mater. Lett. 143, 167 (2015).Google Scholar
  3. 3.
    R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y. Zhu, JOM 68, 1216 (2016).Google Scholar
  4. 4.
    B. Mirzakhani and Y. Payandeh, Mater. Des. 68, 127 (2015).Google Scholar
  5. 5.
    A.A. Khamei and K. Dehghani, Mater. Sci. Eng., A 627, 1 (2015).Google Scholar
  6. 6.
    D. Du, R. Fu, Y. Li, L. Jing, J. Wang, Y. Ren, and K. Yang, Mater. Sci. Eng., A 640, 190 (2015).Google Scholar
  7. 7.
    S. Suarez, F. Lasserre, F. Soldera, R. Pippan, and F. Mücklich, Mater. Sci. Eng., A 626, 122 (2015).Google Scholar
  8. 8.
    J. Liu, A.S. Khan, L. Takacs, and C.S. Meredith, Int. J. Plast 64, 151 (2015).Google Scholar
  9. 9.
    G. Faraji and H. Kim, Mater. Sci. Technol. 12, 905 (2016).Google Scholar
  10. 10.
    K.S. Fong, M.J. Tan, B.W. Chua, and D. Atsushi, Procedia CIRP 26, 449 (2015).Google Scholar
  11. 11.
    D. Jafarlou, E. Zalnezhad, M. Hassan, M. Ezazi, N. Mardi, A. Hamouda, M. Hamdi, and G. Yoon, Mater. Des. 90, 1124 (2016).Google Scholar
  12. 12.
    Y.T. Zhu and X. Liao, Nat. Mater. 3, 351 (2004).Google Scholar
  13. 13.
    I.P. Semenova, A.V. Polyakov, V.V. Polyakova, Y. Huang, R.Z. Valiev, and T.G. Langdon, Adv. Eng. Mater. 18, 2057 (2016).Google Scholar
  14. 14.
    S.V. Sajadifar and G.G. Yapici, Mater. Des. 53, 749 (2014).Google Scholar
  15. 15.
    Y. Chen, Y. Li, X. Xu, J. Hjelen, and H. Roven, Mater. Lett. 117, 195 (2014).Google Scholar
  16. 16.
    Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, S.S. Gireesh, S. Armada, P.C. Skaret, and H.J. Roven, Scr. Mater. 64, 904 (2011).Google Scholar
  17. 17.
    I. Semenova, G. Salimgareeva, G. Da Costa, W. Lefebvre, and R. Valiev, Adv. Eng. Mater. 12, 803 (2010).Google Scholar
  18. 18.
    G.I. Raab, R. Valiev, D. Gunderov, T.C. Lowe, A. Misra, and Y.T. Zhu, Mater. Sci. Forum 584, 80 (2008).Google Scholar
  19. 19.
    G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier, Mater. Sci. Eng., A 517, 97 (2009).Google Scholar
  20. 20.
    H.W. Höppel, Mater. Sci. Forum 503, 259 (2006).Google Scholar
  21. 21.
    H. Kitahara, S. Matsushita, M. Tsushida, and S. Ando, Mater. Trans. 54, 528 (2013).Google Scholar
  22. 22.
    D. Terada, S. Inoue, and N. Tsuji, J. Mater. Sci. 42, 1673 (2007).Google Scholar
  23. 23.
    A. Fattah-alhosseini, A.R. Ansari, Y. Mazaheri, M. Karimi, and M. Haghshenas, Mater. Sci. Eng., A 688, 218 (2017).Google Scholar
  24. 24.
    A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, CIRP Ann. 57, 716 (2008).Google Scholar
  25. 25.
    J. Xing, H. Soda, X. Yang, H. Miura, and T. Sakai, Mater. Trans. 46, 1646 (2005).Google Scholar
  26. 26.
    H. Jiang, C.Y. Xie, J. Song, X.G. Sun, and X.N. Zhang, Mater. Sci. Forum 682, 65 (2011).Google Scholar
  27. 27.
    V.L. Sordi, M. Ferrante, M. Kawasaki, and T.G. Langdon, J. Mater. Sci. 47, 7870 (2012).Google Scholar
  28. 28.
    A.A. Mendes Filho, V.L. Sordi, and M. Ferrante, Mater. Res. 15, 27 (2012).Google Scholar
  29. 29.
    Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Mater. Sci. Eng., A 503, 14 (2009).Google Scholar
  30. 30.
    V. Varyukhin, Y. Beygelzimer, S. Synkov, and D. Orlov, Mater. Sci. Forum 503, 335 (2006).Google Scholar
  31. 31.
    J. Huang, Y. Zhu, H. Jiang, and T. Lowe, Acta Mater. 49, 1497 (2001).Google Scholar
  32. 32.
    R.K. Islamgaliev, V.U. Kazyhanov, L.O. Shestakova, A.V. Sharafutdinov, and R.Z. Valiev, Mater. Sci. Eng., A 493, 190 (2008).Google Scholar
  33. 33.
    M. Shirooyeh, J. Xu, and T.G. Langdon, Mater. Sci. Eng., A 614, 223 (2014).Google Scholar
  34. 34.
    Y. Todaka, M. Umemoto, A. Yamazaki, J. Sasaki, and K. Tsuchiya, Mater. Trans. 49, 7 (2008).Google Scholar
  35. 35.
    C.T. Wang, A.G. Fox, and T.G. Langdon, Mater. Sci. Forum 783, 2701 (2014).Google Scholar
  36. 36.
    M. Eskandarzade, A. Masoumi, G. Faraji, M. Mohammadpour, and X.S. Yan, J. Alloys Compd. 695, 1539 (2017).Google Scholar
  37. 37.
    A. Babaei, G. Faraji, M. Mashhadi, and M. Hamdi, Mater. Sci. Eng., A 558, 150 (2012).Google Scholar
  38. 38.
    G. Faraji, K. Abrinia, M. Mashhadi, and M. Hamdi, Arch. Appl. Mech. 83, 483 (2013).Google Scholar
  39. 39.
    G. Faraji, A. Babaei, M.M. Mashhadi, and K. Abrinia, Mater. Lett. 77, 82 (2012).Google Scholar
  40. 40.
    G. Faraji, M. Mashhadi, and H. Kim, Mater. Sci. Eng., A 528, 4312 (2011).Google Scholar
  41. 41.
    H. Alihosseini, G. Faraji, A. Dizaji, and K. Dehghani, Mater. Charact. 68, 14 (2012).Google Scholar
  42. 42.
    M. Guagliano, J. Mater. Process. Technol. 110, 277 (2001).Google Scholar
  43. 43.
    P. Zhang and J. Lindemann, Scr. Mater. 52, 485 (2005).Google Scholar
  44. 44.
    R. Singh, S. Kumar, N. Mukhopadhyay, G. Sastry, and R. Manna, Int. J. Metal Eng. 2, 62 (2013).Google Scholar
  45. 45.
    W. Pachla, M. Kulczyk, S. Przybysz, J. Skiba, K. Wojciechowski, M. Przybysz, K. Topolski, A. Sobolewski, and M. Charkiewicz, J. Mater. Process. Technol. 221, 255 (2015).Google Scholar
  46. 46.
    L. Mishnaevsky, E. Levashov, R.Z. Valiev, J. Segurado, I. Sabirov, N. Enikeev, S. Prokoshkin, A.V. Solov’yov, A. Korotitskiy, and E. Gutmanas, Mater. Sci. Eng. R 81, 1 (2014).Google Scholar
  47. 47.
    H. Attar, L. Löber, A. Funk, M. Calin, L. Zhang, K. Prashanth, S. Scudino, Y. Zhang, and J. Eckert, Mater. Sci. Eng., A 625, 350 (2015).Google Scholar
  48. 48.
    J. Suh, J. Victoria-Hernandez, D. Letzig, R. Golle, S. Yi, J. Bohlen, and W. Volk, J. Mater. Process. Technol. 217, 286 (2015).Google Scholar
  49. 49.
    J. Zhang, Z. Kang, and L. Zhou, Mater. Sci. Eng., A 647, 184 (2015).Google Scholar
  50. 50.
    Y. Qi, K.G. Contreras, H.-D. Jung, H.-E. Kim, R. Lapovok, and Y. Estrin, Mater. Sci. Eng., C 59, 754 (2016).Google Scholar
  51. 51.
    G. Dyakonov, E. Zemtsova, S. Mironov, I. Semenova, R. Valiev, and S. Semiatin, Mater. Sci. Eng., A 648, 305 (2015).Google Scholar
  52. 52.
    R. Valiev, I.P. Semenova, E. Jakushina, V. Latysh, H.J. Rack, T.C. Lowe, J. Petruželka, L. Dluhoš, D. Hrušák, and J. Sochová, Mater. Sci. Forum 584, 49 (2008).Google Scholar
  53. 53.
    Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, and Y. Li, Materials 7, 1709 (2014).Google Scholar
  54. 54.
    P. Zháňal, K. Václavová, B. Hadzima, P. Harcuba, J. Stráský, M. Janeček, V. Polyakova, I. Semenova, M. Hájek, and K. Hajizadeh, Mater. Sci. Eng., A 651, 886 (2016).Google Scholar
  55. 55.
    A.V. Polyakov, L. Dluhoš, G.S. Dyakonov, G.I. Raab, and R.Z. Valiev, Adv. Eng. Mater. 17, 1869 (2015).Google Scholar
  56. 56.
    T. Lee, D.S. Shih, Y. Lee, and C.S. Lee, Metals 5, 777 (2015).Google Scholar
  57. 57.
    F. Reshadi, G. Faraji, M. Baniassadi, and M. Tajeddini, Surf. Coat. Technol. 316, 113 (2017).Google Scholar
  58. 58.
    M. Rizwan, R. Alias, U.Z. Zaidi, R. Mahmoodian, and M. Hamdi, J. Biomed. Mater. Res., Part A (2017).  10.1002/jbm.a.36259.CrossRefGoogle Scholar
  59. 59.
    G. Purcek, G. Yapici, I. Karaman, and H. Maier, Mater. Sci. Eng., A 528, 2303 (2011).Google Scholar
  60. 60.
    I.P. Semenova, L.R. Saitova, G.I. Raab, A. Korshunov, Y.T. Zhu, T.C. Lowe, and R. Valiev, Mater. Sci. Forum 503, 757 (2006).Google Scholar
  61. 61.
    A. Medvedev, H.P. Ng, R. Lapovok, Y. Estrin, T.C. Lowe, and V.N. Anumalasetty, Mater. Lett. 145, 308 (2015).Google Scholar
  62. 62.
    J. Moradgholi, A. Monshi, and K. Farmanesh, Ceram. Int. 43, 201 (2016).Google Scholar
  63. 63.
    Z. Umi and R. Mahmoodian. Comparative study on microstructure, crystallite size and lattice strain of as-deposited and thermal treatment silver silicon nitride coating on Ti6Al4 V alloy. IOP Conference Series: Materials Science and Engineering. Kuala Lumpur, Malaysia: IOP Publishing; 2017. p. 012074,  https://doi.org/10.1088/1757-899X/210/1/012074.
  64. 64.
    R. Lapovok, V. Mendoza, V.N. Anumalasetty, and P.D. Hodgson, J. Mater. Process. Technol. 229, 678 (2016).Google Scholar
  65. 65.
    A. Medvedev, H. Ng, R. Lapovok, Y. Estrin, T. Lowe, and V. Anumalasetty, J. Mech. Behav. Biomed. Mater. 57, 55 (2016).Google Scholar
  66. 66.
    F.A. Shah, M. Trobos, P. Thomsen, and A. Palmquist, Mater. Sci. Eng., C 62, 960 (2016).Google Scholar
  67. 67.
    V. Latysh, I.P. Semenova, G. Salimgareeva, I. Kandarov, Y.T. Zhu, T.C. Lowe, and R. Valiev, Mater. Sci. Forum 503, 763 (2006).Google Scholar
  68. 68.
    I. Semenova, G. Raab, and R. Valiev, Nanotechnol. Russ. 9, 311 (2014).Google Scholar
  69. 69.
    Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature 419, 912 (2002).Google Scholar
  70. 70.
    V.V. Stolyarov, Y.T. Zhu IV, T.C.Lowe Alexandrov, and R.Z. Valiev, Mater. Sci. Eng., A 343, 43 (2003).Google Scholar
  71. 71.
    Z. Pu, S. Yang, G.L. Song, O.W. Dillon Jr., D.A. Puleo, and I.S. Jawahir, Scr. Mater. 65, 520 (2011).Google Scholar
  72. 72.
    A. Vinogradov, S. Hashimoto, and V.I. Kopylov, Mater. Sci. Eng., A 355, 277 (2003).Google Scholar
  73. 73.
    W. Xu, X. Wu, D. Sadedin, G. Wellwood, and K. Xia, Appl. Phys. Lett. 92, 011924 (2008).Google Scholar
  74. 74.
    V. Segal, Mater. Sci. Eng., A 271, 322 (1999).Google Scholar
  75. 75.
    M. Gzyl, A. Rosochowski, S. Boczkal, L. Olejnik, and M.N. Katimon, Adv. Eng. Mater. 18, 219 (2015).Google Scholar
  76. 76.
    R. Kocich, A. Macháčková, and V.A. Andreyachshenko, Comput. Mater. Sci. 101, 233 (2015).Google Scholar
  77. 77.
    M. Gzyl, A. Rosochowski, S. Boczkal, and L. Olejnik, Mater. Sci. Eng., A 638, 20 (2015).Google Scholar
  78. 78.
    B. Mani, M. Jahedi, and M.H. Paydar, Powder Technol. 219, 1 (2012).Google Scholar
  79. 79.
    M. Ensafi, G. Faraji, and H. Abdolvand, Mater. Lett. 197, 12 (2017).Google Scholar
  80. 80.
    S. Zhang, Y.C. Wang, A.P. Zhilyaev, E. Korznikova, S. Li, G.I. Raab, and T.G. Langdon, Mater. Sci. Eng., A 645, 311 (2015).Google Scholar
  81. 81.
    M. Zha, Y. Li, R.H. Mathiesen, R. Bjørge, and H.J. Roven, Scr. Mater. 105, 22 (2015).Google Scholar
  82. 82.
    D.-H. Kang and T.-W. Kim, Mater. Des. 31, S54 (2010).Google Scholar
  83. 83.
    Y. Han, J. Li, G. Huang, Y. Lv, X. Shao, W. Lu, and D. Zhang, Mater. Des. 75, 113 (2015).Google Scholar
  84. 84.
    H.Y. Um, B.H. Park, D.-H. Ahn, M.I.A. El Aal, J. Park, and H.S. Kim, J. Mech. Behav. Biomed. Mater. 68, 203 (2017).Google Scholar
  85. 85.
    A. Hohenwarter, Mater. Sci. Eng., A 626, 80 (2015).Google Scholar
  86. 86.
    M. Nie, C.T. Wang, M. Qu, N. Gao, J.A. Wharton, and T.G. Langdon, J. Mater. Sci. 49, 2824 (2014).Google Scholar
  87. 87.
    M. Jahedi, I.J. Beyerlein, M.H. Paydar, S. Zheng, T. Xiong, and M. Knezevic, Metall. Mater. Trans. A 48, 1249 (2016).Google Scholar
  88. 88.
    M. Kawasaki and T.G. Langdon, J. Mater. Sci. 49, 6487 (2014).Google Scholar
  89. 89.
    Z. Husaain, A. Ahmed, O.M. Irfan, and F. Al-Mufadi, Int. J. Eng. Tech. 9, 426 (2017).Google Scholar
  90. 90.
    F. de Oliveira Campos, FdCM Schroder, A.C. Araujo, J.G. de Blas, and L.C. Pereira, Procedia CIRP 46, 222 (2016).Google Scholar
  91. 91.
    G. Salishchev, S. Mironov, S. Zherebtsov, and A. Belyakov, Mater. Charact. 61, 732 (2010).Google Scholar
  92. 92.
    P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, and K.L. Murty, Trans. Nonferrous Met. Soc. China 25, 1353 (2015).Google Scholar
  93. 93.
    T. Kubina, J. Dlouhý, M. Köver, and M. Dománková, J Hodek: Mater. Tehnol. 49, 213 (2015).Google Scholar
  94. 94.
    X.M. He, S.S. Zhu, and C.H. Zhang, Adv. Mater. Res. 937, 162 (2014).Google Scholar
  95. 95.
    M.R. Shankar, B.C. Rao, S. Lee, S. Chandrasekar, A.H. King, and W.D. Compton, Acta Mater. 54, 3691 (2006).Google Scholar
  96. 96.
    C.T. Wang, A.G. Fox, and T.G. Langdon, J. Mater. Sci. 49, 6558 (2014).Google Scholar
  97. 97.
    A. Zhilyaev, S. Sergeev, V. Popov, and A. Orlov, Rev. Adv. Mater. Sci 39, 15 (2014).Google Scholar
  98. 98.
    G. Faraji and H. Kim, Mater. Sci. Technol. 33, 905 (2017).Google Scholar
  99. 99.
    R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).Google Scholar
  100. 100.
    S. Amani, G. Faraji, and K. Abrinia, J. Manuf. Process. 28, 197 (2017).Google Scholar
  101. 101.
    S. Amani, G. Faraji, H.K. Mehrabadi, K. Abrinia, and H. Ghanbari, J. Alloys Compd. 723, 467 (2017).Google Scholar
  102. 102.
    M. Eftekhari, G. Faraji, S. Nikbakht, R. Amin, R. Sharifzadeh, M. Mohammadpour, and R. Hildyard, Mater. Sci. Eng., A 703, 551 (2017).Google Scholar
  103. 103.
    M.H. Farshidi, M. Kazeminezhad, and H. Miyamoto, Mater. Sci. Eng., A 640, 42 (2015).Google Scholar
  104. 104.
    N.A. Mara and I.J. Beyerlein, Curr. Opin. Solid State Mater. Sci. 19, 265 (2015).Google Scholar
  105. 105.
    K. Edalati and Z. Horita, Acta Mater. 59, 6831 (2011).Google Scholar
  106. 106.
    G. Serra, L. Morais, C.N. Elias, I.P. Semenova, R. Valiev, G. Salimgareeva, M. Pithon, and R. Lacerda, Mater. Sci. Eng., C 33, 4197 (2013).Google Scholar
  107. 107.
    A.V. Polyakov, D. Gunderov, and G.I. Raab, Mater. Sci. Forum 667, 1165 (2010).Google Scholar
  108. 108.
    K. Topolski, H. Garbacz, W. Pachla, and K.J. Kurzydlowski, Mater. Sci. Forum 674, 47 (2011).Google Scholar
  109. 109.
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Prog. Mater Sci. 60, 130 (2014).Google Scholar
  110. 110.
    P. Pereira, Y. Huang, and T. Langdon, Lett. Mater. 5, 294 (2015).Google Scholar
  111. 111.
    M.J. Qarni, G. Sivaswamy, A. Rosochowski, and S. Boczkal, Mater. Des. 122, 385 (2017).Google Scholar
  112. 112.
    B. An, Z. Li, X. Diao, H. Xin, Q. Zhang, X. Jia, Y. Wu, K. Li, and Y. Guo, Mater. Sci. Eng., C 67, 34 (2016).Google Scholar
  113. 113.
    A. Jäger, V. Gärtnerova, and K. Tesař, Mater. Sci. Eng., A 644, 114 (2015).Google Scholar
  114. 114.
    C. Elias, D. Fernandes, and R. Biasi, Fatigue Fract. Eng. Mater. Struct. 40, 696 (2016).Google Scholar
  115. 115.
    S. Fintová, M. Arzaghi, I. Kuběna, L. Kunz, and C. Sarrazin-Baudoux, Int. J. Fatigue 98, 187 (2017).Google Scholar
  116. 116.
    M. Zhu, R. Wang, C. Chen, H. Zhang, and G. Zhang, Ceram. Int. 43, 5708 (2017).Google Scholar
  117. 117.
    N. Eslami, R. Mahmoodian, M. Hamdi, N.M. Khatir, M.K. Herliansyah, and A.R. Rafieerad, JOM 69, 691 (2017).Google Scholar
  118. 118.
    R. Bansal, J. Singh, V. Singh, D. Singh, and P. Das, J. Mater. Eng. Perform. 26, 969 (2017).Google Scholar
  119. 119.
    A. Fattah-alhosseini, A.R. Ansari, Y. Mazaheri, and M.K. Keshavarz, Mater. Sci. Eng., C 71, 771 (2017).Google Scholar
  120. 120.
    H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M. Shakeri, S.G. Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K. Kurzydlowski, Mater. Sci. Eng., C 39, 299 (2014).Google Scholar
  121. 121.
    S. Hariprasad, M. Ashfaq, T. Arunnellaiappan, M. Harilal, and N. Rameshbabu, Surf. Coat. Technol. 292, 20 (2016).Google Scholar
  122. 122.
    A. Polyakov, I. Semenova, and R. Valiev. High fatigue strength and enhanced biocompatibility of UFG CP Ti for medical innovative applications. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2014. p. 012113.Google Scholar
  123. 123.
    S.H. Nemati and A. Hadjizadeh, AAPS PharmSciTech 18, 2180 (2017).Google Scholar
  124. 124.
    S.M. Baek, M.H. Shin, J. Moon, H.S. Jung, W. Hwang, J.T. Yeom, S.K. Hahn, and H.S. Kim, Sci. Rep. 7, 44213 (2017).Google Scholar
  125. 125.
    A. Hamlekhan, C. Takoudis, C. Sukotjo, M.T. Mathew, A. Virdi, R. Shahbazian-Yassar, and T. Shokuhfar, J. Nanotech. Smart Mater. 1, 1 (2014).Google Scholar
  126. 126.
    D.J. Fernandesa, C.N. Eliasa, and R.Z. Valievb, Mater. Res. 18, 1163 (2015).Google Scholar
  127. 127.
    Y. Estrin, E.P. Ivanova, A. Michalska, V.K. Truong, R. Lapovok, and R. Boyd, Acta Biomater. 7, 900 (2011).Google Scholar
  128. 128.
    C. Zheng, F. Nie, Y. Zheng, Y. Cheng, S. Wei, and R. Valiev, Appl. Surf. Sci. 257, 5634 (2011).Google Scholar
  129. 129.
    I. Dimić, I. Cvijović-Alagić, A. Hohenwarter, R. Pippan, V. Kojić, J. Bajat, and M. Rakin, J. Biomed. Mater. Res. B (2017).  https://doi.org/10.1002/jbm.b.33919.CrossRefGoogle Scholar
  130. 130.
    Y. Li, C. Wong, J. Xiong, P. Hodgson, and C. Wen, J. Dent. Res. 89, 493 (2010).Google Scholar
  131. 131.
    B. Ratna Sunil, A. Thirugnanam, and U. Chakkingal, T Sampath Kumar: Mater. Technol. 31, 743 (2016).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Mechanical Engineering Department, Faculty of Engineering, Centre of Advanced Manufacturing and Material Processing (AMMP)University of MalayaKuala LumpurMalaysia
  2. 2.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran
  3. 3.Department of Manufacturing, Faculty of Mechanical EngineeringUniversity Technology MalaysiaJohorMalaysia
  4. 4.Department of Research and DevelopmentAzarin Kar Ind. Co.KermanIran

Personalised recommendations