, Volume 69, Issue 12, pp 2803–2809 | Cite as

Backtracking Depth-Resolved Microstructures for Crystal Plasticity Identification—Part 2: Identification

  • Qiwei Shi
  • Félix Latourte
  • François Hild
  • Stéphane Roux


The present study considers identification of crystal plasticity parameters from knowledge of a deformed microstructure, backtracked to the reference state, and known kinematics along the sample surface. This theoretical analysis is applied to a numerical (synthetic) test case. A two-dimensional (2D) microstructure with one dimension along the depth is generated, then deformed using a known crystal plasticity law. A procedure is proposed to calibrate the constitutive parameters, addressing the specific challenge of partial knowledge of boundary conditions. The proposed identification strategy combined with estimation of the reference microstructure is shown to retrieve the constitutive parameters with good accuracy.



The authors acknowledge financial support from Euratom research and training program 2014-2018 SOTERIA under grant agreement No. 661913. This paper reflects only the authors’ view; the Commission is not responsible for any use that may be made of the information it contains. The authors also thank Dr. Adrien Guery for constructive advice.


  1. 1.
    A. Allais, M. Bornert, T. Bretheau, and D. Caldemaison, Acta Metall. Mater. 42(11), 3865 (1994)CrossRefGoogle Scholar
  2. 2.
    T. Hoc, J. Crépin, L. Gélébart, and A. Zaoui, Acta Mater. 51(18), 5477 (2003)CrossRefGoogle Scholar
  3. 3.
    E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert, and D. Caldemaison, Int. J. Plast. 23(9), 1512 (2007)CrossRefGoogle Scholar
  4. 4.
    A. Guery, F. Hild, F. Latourte, and S. Roux, Mech. Mater. 100, 55 (2016)CrossRefGoogle Scholar
  5. 5.
    Q. Shi, F. Latourte, F. Hild, and S. Roux, LMT Cachan, France, unpublished research (2017)Google Scholar
  6. 6.
    E. Pagnacco, A.S. Caro-Bretelle, and P. Ienny, in Full-Field Measurements and Identification in Solid Mechanics ed. M. Grédiac and F. Hild (New Jersey: Wiley, 2012), p. 247Google Scholar
  7. 7.
    F. Mathieu, H. Leclerc, F. Hild, and S. Roux, Exp. Mech. 55(1), 105 (2015)CrossRefGoogle Scholar
  8. 8.
    F. Hild and S. Roux, Exp. Mech. 52, 1503 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Monnet, L. Vincent, and B. Devincre, Acta Mater. 61(16), 6178 (2013)CrossRefGoogle Scholar
  10. 10.
    F. Latourte, T. Salez, A. Guery, N. Rupin, and M. Mahé, J. Nucl. Mater. 454(1–3), 373 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Kraska, M. Doig, D. Tikhomirov, D. Raabe, and F. Roters, Comput. Mater. Sci. 46(2), 383 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Bertin, C. Du, J.P.M. Hoefnagels, and F. Hild, Acta Mater. 116, 321 (2016)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.LMT, ENS Paris-Saclay / CNRS / Université Paris-SaclayCachanFrance
  2. 2.EDF R&D, Site des RenardièresMoret-sur-LoingFrance

Personalised recommendations