, Volume 69, Issue 12, pp 2810–2818 | Cite as

Backtracking Depth-Resolved Microstructures for Crystal Plasticity Identification—Part 1: Backtracking Microstructures

  • Qiwei Shi
  • Félix Latourte
  • François Hild
  • Stéphane Roux


In situ mechanical tests performed on polycrystalline materials in a scanning electron microscope suffer from the lack of information on depth-resolved three-dimensional microstructures. The latter ones can be accessed with focused ion beam technology only postmortem, because it is destructive. The present study considers the challenge of backtracking this deformed microstructure to the reference state. This theoretical question is tackled on a numerical (synthetic) test case. A two-dimensional microstructure with one dimension along the depth is considered, and deformed using a crystal plasticity law. The proposed numerical strategy is shown to retrieve accurately the reference state.



The authors acknowledge the financial support of Euratom research and training program 2014–2018 SOTERIA under Grant Agreement No. 661913. This paper reflects only the authors’ view, and the Commission is not responsible for any use that may be made of the information it contains.


  1. 1.
    E. Héripré, M. Dexet, J. Crépin, L. Gélébart, A. Roos, M. Bornert, and D. Caldemaison, Int. J. Plast., 23(9), 1512 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Lim, J.D. Carroll, C.C. Battaile, B.L. Boyce, and C.R. Weinberger, Int. J. Mech. Sci., 92(0), 98 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Guery, F. Hild, F. Latourte, and S. Roux, Mech. Mater., 100, 55 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Zeghadi, F. N’Guyen, S. Forest, A.-F. Gourgues, and O. Bouaziz, Philos. Mag., 87(8), 1425 (2007).CrossRefGoogle Scholar
  5. 5.
    R.A. Lebensohn, R. Brenner, O. Castelnau, and A.D. Rollett, Acta Mater., 56(15), 3914 (2008).CrossRefGoogle Scholar
  6. 6.
    M.A. Groeber, B.K. Haley, M.D. Uchic, D.M. Dimiduk, and S. Ghosh, Mater. Charact., 57(4–5), 259 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Mater. Sci. Eng., A, 527(10–11), 2738 (2010).CrossRefGoogle Scholar
  8. 8.
    H. Altendorf, F. Latourte, D. Jeulin, M. Faessel, and L. Saintoyant, Image Anal. Stereol., 33, 121 (2014).CrossRefGoogle Scholar
  9. 9.
    A. Allais, M. Bornert, T. Bretheau, and D. Caldemaison, Acta Metall. Mater., 42(11), 3865 (1994).CrossRefGoogle Scholar
  10. 10.
    T. Hoc, J. Crépin, L. Gélébart, and A. Zaoui, Acta Mater., 51(18), 5477 (2003).CrossRefGoogle Scholar
  11. 11.
    Q. Shi, F. Latourte, F. Hild, and S. Roux, Meas. Sci. Technol., 27(9), 095006 (2016).CrossRefGoogle Scholar
  12. 12.
    W.Z. Abuzaid, M.D. Sangid, J.D. Carroll, H. Sehitoglu, and J. Lambros, J. Mech. Phys. Solids, 60(6), 1201 (2012).CrossRefGoogle Scholar
  13. 13.
    J. Carter, M.W. Kuper, M.D. Uchic, and M.J. Mills, Mater. Sci. Eng. A, 605(0), 127 (2014).CrossRefGoogle Scholar
  14. 14.
    A.J. Wilkinson, G. Meaden, and D.J. Dingley, Ultramicroscopy, 106(4–5), 307 (2006).CrossRefGoogle Scholar
  15. 15.
    Q. Shi, F. Latourte, F. Hild, and S. Roux, JOM (2017). doi: 10.1007/s11837-017-2586-1.Google Scholar
  16. 16.
    Code_Aster. Accessed 1 June 2016.
  17. 17.
    F. Latourte, T. Salez, A. Guery, N. Rupin, and M. Mahé, J. Nucl. Mater., 454(1–3), 373 (2014).CrossRefGoogle Scholar
  18. 18.
    G. Monnet, L. Vincent, and B. Devincre, Acta Mater., 61(16), 6178 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.LMT, ENS Paris-Saclay, CNRSUniversité Paris-SaclayCachanFrance
  2. 2.EDF R&DSite des Renardières, avenue des RenardièresMoret-sur-LoingFrance

Personalised recommendations