Advertisement

JOM

, Volume 69, Issue 12, pp 2524–2528 | Cite as

Introduction of Electrostatically Charged Particles into Metal Melts

  • Olga Kudryashova
  • Sergey Vorozhtsov
  • Maria Stepkina
  • Anton Khrustalev
Article
  • 98 Downloads

Abstract

One of the possible methods to produce composite alloys with improved mechanical characteristics is the modification of metal melts using submicron- or nanosized particles. Different methods, like ultrasonic or vibration processing, have been used to introduce these particles into the metal melt. The introduction of particles into a metal melt is prevented by the poor wettability of the liquid metal. The present study explores the use of electrostatic charge for increasing the wettability of the particles and preventing their agglomeration. The wettability of electrostatically charged particles by the metal melt under the impact of ultrasound has been studied. The relationships between the impact time and the physical and chemical properties of the particles and the melt along with the characteristics of the acoustic radiation have been studied. It was experimentally demonstrated that the introduction of electrostatically charged particles into the metal melt reduces the porosity and the crystal grain size.

Notes

Acknowledgements

The research was funded by a grant from the Russian Science Foundation (Project No. 17-13-01252).

References

  1. 1.
    S. Vorozhtsov, V. Kolarik, V. Promakhov, I. Zhukov, A. Vorozhtsov, and V. Kuchenreuther-Hummel, JOM 68, 1312 (2016).CrossRefGoogle Scholar
  2. 2.
    S. Vorozhtsov, D. Eskin, A. Vorozhtsov, and S. Kulkov, Light Metals 2014 (Warrendale: TMS, 2014), p. 1373.Google Scholar
  3. 3.
    S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Mater. Trans. A 46A, 2870 (2015).CrossRefGoogle Scholar
  4. 4.
    M. Tabandeh-Khorshid, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Eng. Sci. Technol. Int. J 19, 463 (2016).CrossRefGoogle Scholar
  5. 5.
    Y. Yang and X. Li, J. Eng. Ind. 129, 497 (2007).Google Scholar
  6. 6.
    O. Kudryashova and S. Vorozhtsov, JOM 68, 1307 (2016).CrossRefGoogle Scholar
  7. 7.
    O.B. Kudryashova, A.V. Kozyrev, and S.A. Vorozhtsov, Russ. Phys. J. 59, 626 (2016).CrossRefGoogle Scholar
  8. 8.
    G.I. Eskin and D.G. Eskin, Ultrasonic Treatment of Light Alloy Melts (London: CRC Press, 2014).CrossRefGoogle Scholar
  9. 9.
    S. Vorozhtsov, O. Kudryashova, V. Promakhov, V. Dammer, and A. Vorozhtsov, JOM 68, 3094 (2016).CrossRefGoogle Scholar
  10. 10.
    C. Vivès, JOM-e 50, 2 (1998).CrossRefGoogle Scholar
  11. 11.
    E.G. Konovalov and I.K. Germanovich, Dokl. Akad. Nauk Belorus. SSR 6, 492 (1962).Google Scholar
  12. 12.
    YuP Rozin, V.S. Tikhonova, and M.N. Kostucheck, Ukr. J. Phys. 20, 214 (1975).Google Scholar
  13. 13.
    T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki, and M. Yoshida, Compos. A 38, 771 (2007).CrossRefGoogle Scholar
  14. 14.
    S.A. Vorozhtsov, D.G. Eskin, J. Tamayo, A.B. Vorozhtsov, V.V. Promakhov, A.A. Averin, and A.P. Khrustalyov, Metall. Mater. Trans. A 46A, 2870 (2015).CrossRefGoogle Scholar
  15. 15.
    P.P. Prokhorenko, N.V. Dezhkunov, and G.E. Konovalov, Ultrasonic Capillary Effect (Minsk: Nauka i Tekhnika, 1981).Google Scholar
  16. 16.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  17. 17.
    L. Rozenberg, High-intensity Ultrasonic Fields (New York: Plenum Press, 1971).CrossRefGoogle Scholar
  18. 18.
    S. Vorozhtsov, I. Zhukov, A. Vorozhtsov, A. Zhukov, D. Eskin, and A. Kvetinskaya, Adv. Mater. Sci. Eng. (2015). doi: 10.1155/2015/718207.Google Scholar
  19. 19.
    I. Tzanakis, W.W. Xu, D.G. Eskin, P.D. Lee, and N. Kotsovinos, Ultrason. Sonochem. 27, 72 (2015).CrossRefGoogle Scholar
  20. 20.
    E. Saiz, A. P. Tomsia, and K. Suganuma Wetting and Strength Issues at Al/α-Alumina Interfaces. https://www.osti.gov/scitech/servlets/purl/827082. Accessed 8 Sept 2017.
  21. 21.
    G.I. Eskin, Technol. Legk. Spl. 11, 21 (1974).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.IPCET Siberian BranchRussian Academy of SciencesBiyskRussia

Personalised recommendations