, Volume 69, Issue 10, pp 2038–2044 | Cite as

Production and Characterization of TiO2 Nanofilms for Hemocompatible and Photocatalytic Applications

  • C. E. SchvezovEmail author
  • M. L. Vera
  • J. M. Schuster
  • M. R. Rosenberger


Titanium dioxide (TiO2) coatings are currently produced for hemocompatible and photocatalytic applications by using two techniques: sol–gel and anodic oxidation. In this review, the research advances on TiO2 nanofilms produced with these techniques are presented, with a focus on different aspects such as process parameters, morphology, roughness, crystal structure, adhesion, wear and erosion resistance, corrosion resistance, hemocompatibility, toxicity, plaque and bacterial adhesion, and heterogeneous photocatalysis of immobilized porous material. This review was presented at the 3rd Pan American Materials Congress at the 2017 TMS Annual Meeting and Exhibition in San Diego, California, USA.


  1. 1.
    Y. Zhang, Y. Tang, W. Li, and X. Chen, Chem. Nano Mater. 1, 1 (2016).Google Scholar
  2. 2.
    M. Kurttepeli, S. Deng, F. Mattelar, D.J. Cott, P. Vereeckens, J. Dendooven, C. Deteavernier, and S. Bals, ACS Appl. Mater. Interfaces. 9, 8055 (2017).CrossRefGoogle Scholar
  3. 3.
    M.I. Litter, Advances in Chemical Engineering Photocatalytic Technologies, ed. H.I. de Lasa and B.S. Rosales (Atlanta: Elsevier, 2009), p. 37.CrossRefGoogle Scholar
  4. 4.
    D. Robert, V. Keller, and N. Keller, Photocatalysis and Water Purification. From Fundamentals to Recent Applications, ed. P. Pichat (Weinheim: Wiley, 2013), p. 145.CrossRefGoogle Scholar
  5. 5.
    L. Rasmusson, J. Roos, and H. Bistedt, Clin. Implant Dent. Relat. Res. 7, 36 (2005).CrossRefGoogle Scholar
  6. 6.
    A. Besinis, S.D. Hadi, H.R. Le, C. Tredwin, and R.D. Handy, Nanotoxicology 11, 327 (2017).CrossRefGoogle Scholar
  7. 7.
    E. Bertran-Partida, B. Valdez-Salas, M. Curiel-Alvarez, S. Castillo-Uribe, A. Escamilla, and N. Nedev, Mater. Sci. Eng., C 76, 59 (2017).CrossRefGoogle Scholar
  8. 8.
    C.E. Schvezov, M.A. Alterach, M.L. Vera, M.R. Rosenberger, and A.E. Ares, JOM 62, 84 (2010).CrossRefGoogle Scholar
  9. 9.
    N. Huang, P. Yang, Y.X. Leng, J.Y. Chen, H. Sun, J. Wang, P.D. Ding, T.F. Xi, and Y. Leng, Biomaterials 24, 2177 (2003).CrossRefGoogle Scholar
  10. 10.
    J.Y. Jiang, J.L. Xu, Z.H. Liu, L. Deng, B. Sun, S.D. Liu, L. Wang, and H.Y. Liu, Appl. Surf. Sci. 347, 591 (2015).CrossRefGoogle Scholar
  11. 11.
    M.L. Vera, J. Schuster, M.R. Rosenberger, H. Bernard, C.E. Schvezov, and A.E. Ares, Proc. Mater. Sci. 8, 366 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme, J. Biomed. Mater. Res. A 59, 18 (2002).CrossRefGoogle Scholar
  13. 13.
    J.X. Liu, D.Z. Yang, F. Shi, and Y.J. Cai, Thin Solid Films 429, 225 (2003).CrossRefGoogle Scholar
  14. 14.
    C.J. Brinker and A.J. Hurd, J. Physics III 4, 1231 (1994).Google Scholar
  15. 15.
    H. Zhang and J. Banfield, Am. Min. 84, 528 (1999).CrossRefGoogle Scholar
  16. 16.
    P.C. Favilla, M.S. Thesis (UNSaM, CNEA-Instituto de tecnología J. Sabato, Buenos Aires, 2009).Google Scholar
  17. 17.
    M.L. Vera, M.A. Alterach, M.R. Rosenberger, D.G. Lamas, C.E. Schvezov, and A.E. Ares, Nanomater. Nanotechnol. 4, 10 (2014).CrossRefGoogle Scholar
  18. 18.
    N. Masahashi, Y. Mizukoshi, S. Semboshi, and N. Ohtsu, Appl. Catal. B 90, 255 (2009).CrossRefGoogle Scholar
  19. 19.
    A.K. Sharma, Thin Solid Films 208, 48 (1992).CrossRefGoogle Scholar
  20. 20.
    A. Alajdem, J. Mater. Sci. 8, 688 (1973).CrossRefGoogle Scholar
  21. 21.
    M.V. Diamanti and M.P. Pedeferri, Corros. Sci. 49, 939 (2007).CrossRefGoogle Scholar
  22. 22.
    T. Shibata and Y.-C. Zhu, Corros. Sci. 37, 133 (1995).CrossRefGoogle Scholar
  23. 23.
    D. Capek, M.P. Gigandet, M. Masmoudi, M. Wery, and O. Banakh, Surf. Coat. Technol. 202, 1379 (2008).CrossRefGoogle Scholar
  24. 24.
    T.H. Teh, A. Berkani, S. Mato, P. Skeldon, G.E. Thompson, H. Habazaki, and K. Shimizu, Corros. Sci. 45, 2757 (2003).CrossRefGoogle Scholar
  25. 25.
    M.L. Vera, A.E. Ares, D. Lamas, and C.E. Schvezov, An. Asoc. Fis. Argent. 20, 1850 (2008).Google Scholar
  26. 26.
    H. Habazaki, M. Uozumi, H. Konno, K. Shimizu, P. Skeldon, and G.E. Thompson, Corros. Sci. 45, 2063 (2003).CrossRefGoogle Scholar
  27. 27.
    Y.T. Sul, C.B. Johansson, S. Petronis, A. Krozer, Y. Jeong, A. Wennerberg, and T. Albrektsson, Biomaterials 23, 491 (2002).CrossRefGoogle Scholar
  28. 28.
    J.S.L. Leach and B.R. Pearson, Corros. Sci. 28, 43 (1988).CrossRefGoogle Scholar
  29. 29.
    M.V. Diamanti, F. Bolzoni, M. Ormellese, E.A. Pérez-Rosales, and M.P. Pedeferri, Corros. Eng., Sci. Technol. 45, 428 (2010).CrossRefGoogle Scholar
  30. 30.
    M.L. Vera, Ph.D. Dissertation (UNSAM. CNEA - Instituto de Tecnología J. Sabato, Buenos Aires, 2013).Google Scholar
  31. 31.
    M.L. Vera, A. Colaccio, M.R. Rosenberger, C.E. Schvezov, and A.E. Ares, Coatings 7, 39 (2017).CrossRefGoogle Scholar
  32. 32.
    A.I. Kociubczyk, M.L. Vera, C.E. Schvezov, E. Heredia, and A.E. Ares, Proc. Mater. Sci. 8, 65 (2015).CrossRefGoogle Scholar
  33. 33.
    M.L. Vera, M.R. Rosenberger, C.E. Schvezov, and A.E. Ares, Int. J. Biomater. 2015, 9 (2015).CrossRefGoogle Scholar
  34. 34.
    M.R. Rosenberger, O.N. Amerio, and C.E. Schvezov, Mech. Comput. 24, 1943 (2005).Google Scholar
  35. 35.
    W.L. Lim, Y.T. Chew, H.T. Low, and W.L. Foo, J. Biomech. 36, 1269 (2003).CrossRefGoogle Scholar
  36. 36.
    T.S. Andersen, P. Johansen, B.O. Christensen, P.K. Paulsen, H. Nygaard, and J.M. Hasenkam, Ann. Thorac. Surg. 8, 34 (2006).CrossRefGoogle Scholar
  37. 37.
    M.R. Rosenberger, L.A. Guerrero, M.L. Vera, and C.E. Schvezov, An. Asoc. Fis. Argent. 24, 71 (2013).Google Scholar
  38. 38.
    M. Boteros, Caracterización de las propiedades Tribologicas de recubrimentos Duros, Unviersidad de Barcelona (2005).Google Scholar
  39. 39.
    S. Jacobsson, M. Olsson, P. Hedenqvist, and O. Vingsbo, ASM Handbook Volume 18: Friction, Lubrications and Wear Technology, ed. P.J. Blau (Materials Park: ASM International, 1997), pp. 820–837.Google Scholar
  40. 40.
    P. Chalker, S. Bull, and D. Rickerby, Mater. Sci. Eng., A 140, 583 (1991).CrossRefGoogle Scholar
  41. 41.
    P. Bodo and J.E. Sundgren, J. Appl. Phys. 60, 1161 (1986).CrossRefGoogle Scholar
  42. 42.
    S. Bull and E. Berasetegui, Tribol. Int. 39, 99 (2006).CrossRefGoogle Scholar
  43. 43.
    M.L. Vera, M.R. Rosenberger, C. Schvezov, and A. Ares, Adhesion of Anodic Titanium Dioxide Coatings on Titanium Grades 5 Alloys, Symposium: Biological Materials Science Symposium. TMS 2015 Annual Meeting and Exhibition March 15–19, 2015, Orlando, FL.Google Scholar
  44. 44.
    E. Rabinowicz, Friction and Wear of Materials, 2nd ed. (New York: Wiley, 1995).Google Scholar
  45. 45.
    S.C. Lim and M.F. Ashby, Acta Metall. 35, 1 (1987).CrossRefGoogle Scholar
  46. 46.
    M.A. Alterach, P.C. Favilla, M.R. Rosenberger, D.G. Lamas, A.E. Ares, and C.E. Schvezov, An. Asoc. Fis. Argent. 20, 147 (2008).Google Scholar
  47. 47.
    M.L. Vera, M.R. Rosenberger, C.E. Schvezov, and A.E. Ares, Nanomater. Nanotechnol. 5, 1 (2015).CrossRefGoogle Scholar
  48. 48.
    J.M. Schuster, M.R. Rosenberger, and C.E. Schvezov, Wear of TiO 2 Nanofilms Synthetized on Ti6Al4 V and 316 Stainles Steel, TMS 2017, 146th Annual Meeting and Exhibition, San Diego, CA.Google Scholar
  49. 49.
    X. Liu, P.K. Chu, and C. Ding, Mater. Sci. Eng. 49, 49 (2004).CrossRefGoogle Scholar
  50. 50.
    C. Leyens and M. Peters, Titanium and Titanium Alloys; Fundamentals and Applications, 1st ed. (Cologne: Wiley, 2003), p. 512.CrossRefGoogle Scholar
  51. 51.
    H. Reza, A. Bidhendi, and M. Pouranvari, Metall. Mater. Eng. 17, 13 (2011).Google Scholar
  52. 52.
    S. Kumar, T.S.N. Sankara Narayanan, S. Ganesh Sundara Raman, and S.K. Seshadri, Corros. Sci. 52, 711 (2010).CrossRefGoogle Scholar
  53. 53.
    S.A. Fadl-allah and Q. Mohsen, Appl. Surf. Sci. 256, 5849 (2010).CrossRefGoogle Scholar
  54. 54.
    S. Tamilselvi, V. Raman, and N. Rajendran, Electrochim. Acta 52, 839 (2006).CrossRefGoogle Scholar
  55. 55.
    M. Schaldach, Electroterapia del Corazón, Aspectos técnicos en Estimulación Cardiaca (New York: Springer, 1993), p. 253.Google Scholar
  56. 56.
    M. Atapour, A.L. Pilchak, G.S. Frankel, and J.C. Williams, Mater. Sci. Eng., C 31, 885 (2011).CrossRefGoogle Scholar
  57. 57.
    J.R. Galvele and G.S. Duffó, Desgradación de Materiales: Corrosión, 1st ed. (Buenos Aires, Jorge Bauino Ediciones: Instituto Sabato, 2006).Google Scholar
  58. 58.
    M.L. Vera, E. Linardi, L. Lanzani, C. Mendez, C.E. Schvezov, and A.E. Ares, Mater. Corros. 66, 1140 (2015).CrossRefGoogle Scholar
  59. 59.
    C.J. Van Oss, Interfacial Forces in Aqueous Media, 2nd ed. (Boca Raton, FL: CRC Press, 2006).Google Scholar
  60. 60.
    C.L. Perini, Q. Zhao, Y. Liu, and E. Abel, Colloids Surf. B 48, 143 (2006).CrossRefGoogle Scholar
  61. 61.
    J.M. Schuster, C.E. Schvezov, and M.R. Rosenberger, Proc. Mater. Sci. 8, 742 (2015).CrossRefGoogle Scholar
  62. 62.
    M. Żenkiewicz, J. Achiev. Mater. Manuf. Eng. 24, 137 (2007).Google Scholar
  63. 63.
    J.M. Schuster, C.E. Schvezov, and M.R. Rosenberger, Proc. Mater. Sci. 8, 732 (2015).CrossRefGoogle Scholar
  64. 64.
    J.M. Schuster, M.L. Vera, C.E. Schvezov, and M.R. Rosenberger, Hidrofobicidad y Tensión Superficial de Nanopelículas de Dióxido de Titanio. 100ª (Reunión Nacional de la Asociación Física Argentina 2015). San Luis.Google Scholar
  65. 65.
    C.J. Van Oss, The Properties of Water and Their Role in Colloidal and Biological Systems, 1st ed., vol. 16 (Waltham, MA: Academic Press, 2008).Google Scholar
  66. 66.
    J.M. Schuster, M.L. Vera, C.E. Schvezov, and M.R. Rosenberger, Estudio de la Adhesión Microbiana de Staphylococcus Epidermidis en Nanopelículas de TiO 2 : Predicción Teórica. 100ª (Reunión Nacional de la Asociación Física Argentina San Luis, Argentina, 2015).Google Scholar
  67. 67.
    C. Sousa, P. Teixeira, and R. Oliveira, Int. J. Biomater. 1 (2009).Google Scholar
  68. 68.
    K.C. Dee, D.A. Puleo, and R. Bizios, An Introduction to Tissue-Biomaterial Interactions, 1st ed. (New York: Wiley, 2002).CrossRefGoogle Scholar
  69. 69.
    J.M. Schuster, M.L. Vera, M.E. Laczeski, M.R. Rosenberger, and C.E. Schvezov, TMS 2015 Supplemental Proceedings (Warrendale, PA: TMS, 2015), pp. 653–660.Google Scholar
  70. 70.
    R. Thull, Biomol. Eng. 19, 43 (2002).CrossRefGoogle Scholar
  71. 71.
    J.E. Ellingsen, Periodontol 2000, 36 (1998).CrossRefGoogle Scholar
  72. 72.
    C.N. Elias, Y. Oshida, J.H. Cavalcanti Lima, and C.A. Muller, J. Mech. Behav. Biomed. Mater. 1, 234 (2008).CrossRefGoogle Scholar
  73. 73.
    H.D. Traid, M.L. Vera, A.E. Ares, and M.I. Litter, Mater. Chem. Phys. 191, 106 (2017).CrossRefGoogle Scholar
  74. 74.
    D. Regonini, C.R. Bowen, A. Jaroenworaluck, and R. Stevens, Mater. Sci. Eng., R 74, 377 (2013).CrossRefGoogle Scholar
  75. 75.
    A.L. Oliveira, J.F. Mano, and R.L. Reis, Curr. Opin. Solid State Mater. Sci. 7, 309 (2003).CrossRefGoogle Scholar
  76. 76.
    F. Barrere, M.M.E. Snel, C.A. van Blitterswijk, K. de Groot, and P. Layrolle, Biomaterials 25, 2901 (2004).CrossRefGoogle Scholar
  77. 77.
    M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, and D.D. Dionysiou, Appl. Catal. B 125, 331 (2012).CrossRefGoogle Scholar
  78. 78.
    L. Sun, J. Li, C.L. Wang, S.F. Li, H.B. Chen, and C.J. Lin, Sol. Energy Mater. Sol. Cells 93, 1875 (2009).CrossRefGoogle Scholar
  79. 79.
    D. Scharnweber, Metals as Biomaterials, ed. J.A. Helsen and H.J. Breme (New York: Wiley, 1998),Google Scholar
  80. 80.
    A. Sola, B. Devis, and V. Cannillo, Biotechnol. Adv. 34, 504 (2016).CrossRefGoogle Scholar
  81. 81.
    S. Zimmermann, U. Specht, L. Spie, H. Romanus, S. Krischok, M. Himmerlich, and J. Ihde, Mater. Sci. Eng., A 558, 755 (2012).CrossRefGoogle Scholar
  82. 82.
    S. Wu, X. Liu, K.W.K. Yeung, H. Guo, P. Li, T. Hu, C. Yuen Chung, and P.K. Chu, Surf. Coat. Technol. 233, 13 (2013).CrossRefGoogle Scholar
  83. 83.
    M. Yazıcı, O. Çomaklı, T. Yetim, A.F. Yetim, and A. Celik, Tribol. Int. 104, 175 (2016).CrossRefGoogle Scholar
  84. 84.
    O. Çomaklı, T. Yetim, and A. Çelik, Surf. Coat. Technol. 246, 34 (2014).CrossRefGoogle Scholar
  85. 85.
    T. Yetim, J. Bionic Eng. 13, 397 (2016).CrossRefGoogle Scholar
  86. 86.
    T. Yetim, Surf. Coat. Technol. 309, 790 (2017).CrossRefGoogle Scholar
  87. 87.
    S. Movafaghi, V. Leszczak, W. Wang, J.A. Sorkin, L.P. Dasi, K.C. Popat, and A.K. Kota, Adv. Healthc. Mater. 6, 4 (2017).Google Scholar
  88. 88.
    M. Pflaum, M. Kuehn-Kauffeldt, S. Schmeckebier, D. Dipresa, K. Chauhan, B. Wiegmann, R.J. Haug, J. Schein, A. Haverich, and S. Korossis, Acta Biomater. 50, 510 (2017).CrossRefGoogle Scholar
  89. 89.
    M. Kulkarni, A. Mazare, E. Gongadze, Š. Perutkova, V. Kralj-Iglič, I. Milošev, and M. Mozetič, Nanotechnology 26, 062002 (2015).CrossRefGoogle Scholar
  90. 90.
    M. Vandrovcova, J. Hanus, M. Drabik, O. Kylian, H. Biederman, V. Lisa, and L. Bacakova, J. Biomed. Mater. Res. A 100, 1016 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • C. E. Schvezov
    • 1
    Email author
  • M. L. Vera
    • 1
  • J. M. Schuster
    • 1
  • M. R. Rosenberger
    • 1
  1. 1.Instituto de Materiales de Misiones (IMAM), CONICET – UNaMPosadasArgentina

Personalised recommendations