Advertisement

JOM

, Volume 69, Issue 9, pp 1524–1531 | Cite as

A Model for Diffusion and Immobilization of Lithium in SiOC Nanocomposite Anodes

  • Peter SteinEmail author
  • Dragoljub Vrankovic
  • Magdalena Graczyk-Zajac
  • Ralf Riedel
  • Bai-Xiang Xu
Article
  • 333 Downloads

Abstract

In order to simulate the diffusion of Li ions in SiOC nanocomposites, we developed a reaction–diffusion model for multiphase materials. This model extends existing models for single-phase diffusion through consideration of the ion transport across material interfaces. In each phase, this model regards mobile and immobilized ions together with the irreversible trapping process. The behavior of material interfaces is incorporated using a Butler–Volmer reaction kinetics model. The model is verified using a simple two-phase benchmark on a square domain. Simulations of the coupled diffusion in a random microstructure show a stalling effect, whereby the immobilization process effectively stops the diffusion of mobile ions during the first stages of intercalation.

Notes

Acknowledgements

The author B.-X. Xu would particularly like to thank the Adolf Messer Foundation for awarding her the Adolf Messer Prize and for the financial support.

References

  1. 1.
    A.M. Wilson, J.N. Reimers, E.W. Fuller, and J. Dahn, Solid State Ion. 74, 249 (1994).CrossRefGoogle Scholar
  2. 2.
    A.M. Wilson, W. Xing, G. Zank, B. Yates, and J.R. Dahn, Solid State Ion. 100, 259 (1997).CrossRefGoogle Scholar
  3. 3.
    A.M. Wilson, G. Zank, K. Eguchi, W. Xing, and J.R. Dahn, J. Power Sources 68, 195 (1997).CrossRefGoogle Scholar
  4. 4.
    A.M. Wilson, G. Zank, K. Eguchi, W. Xing, B. Yates, and J.R. Dahn, Chem. Mater. 9, 1601 (1997).CrossRefGoogle Scholar
  5. 5.
    W. Xing, A.M. Wilson, K. Eguchi, G. Zank, and J.R. Dahn, J. Electrochem. Soc. 144, 2410 (1997).CrossRefGoogle Scholar
  6. 6.
    W. Xing, A.M. Wilson, G. Zank, and J.R. Dahn, Solid State Ion. 93, 239 (1997).CrossRefGoogle Scholar
  7. 7.
    P. Colombo, G. Mera, R. Riedel, and G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805 (2010).Google Scholar
  8. 8.
    C.G. Pantano, A.K. Singh, and H. Zhang, J. Sol–Gel Sci. Technol. 14, 7 (1999).CrossRefGoogle Scholar
  9. 9.
    H. Zhang and C.G. Pantano, J. Am. Ceram. Soc. 73, 958 (1990).CrossRefGoogle Scholar
  10. 10.
    G.D. Sorarù, S. Modena, E. Guadagnino, P. Colombo, J. Egan, and C.G. Pantano, J. Am. Ceram. Soc. 85, 1529 (2002).CrossRefGoogle Scholar
  11. 11.
    H. Fukui, H. Ohsuka, T. Hino, and K. Kanamura, ACS Appl. Mater. Interfaces 2, 998 (2010).CrossRefGoogle Scholar
  12. 12.
    H. Fukui, H. Ohsuka, T. Hino, and K. Kanamura, J. Power Sources 196, 371 (2011).CrossRefGoogle Scholar
  13. 13.
    H. Fukui, H. Ohsuka, T. Hino, and K. Kanamura, J. Electrochem. Soc. 158, A550 (2011).CrossRefGoogle Scholar
  14. 14.
    H. Fukui, K. Eguchi, H. Ohsuka, T. Hino, and K. Kanamura, J. Power Sources 243, 152 (2013).CrossRefGoogle Scholar
  15. 15.
    P. Dibandjo, M. Graczyk-Zajac, R. Riedel, V.S. Pradeep, G.D. Sorarù, J. Eur. Ceram. Soc. 32, 2495 (2012).CrossRefGoogle Scholar
  16. 16.
    V.S. Pradeep, M. Graczyk-Zajac, M. Wilamowska, R. Riedel, G.D. Sorarù, Solid State Ion. 262, 22 (2014).CrossRefGoogle Scholar
  17. 17.
    V.S. Pradeep, M. Graczyk-Zajac, R. Riedel, G.D. Sorarù, Electrochim. Acta 119, 78 (2014).CrossRefGoogle Scholar
  18. 18.
    M. Graczyk-Zajac, L. Toma, C. Fasel, and R. Riedel, Solid State Ion. 225, 522 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Kaspar, M. Graczyk-Zajac, and R. Riedel, Solid State Ion. 225, 527 (2012).CrossRefGoogle Scholar
  20. 20.
    J. Kaspar, M. Graczyk-Zajac, and R. Riedel, J. Power Sources 244, 450 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Wilamowska, V.S. Pradeep, M. Graczyk-Zajac, R. Riedel, G.D. Sorarù, Solid State Ion. 260, 94 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Graczyk-Zajac, L.M. Reinold, J. Kaspar, V.S. Pradeep, G.D. Sorarù, R. Riedel, Nanomaterials 5, 233 (2015).CrossRefGoogle Scholar
  23. 23.
    V.S. Pradeep, D.G. Ayana, M. Graczyk-Zajac, G.D. Sorarù, R. Riedel, Electrochim. Acta 157, 41 (2015).CrossRefGoogle Scholar
  24. 24.
    J. Kaspar, M. Graczyk-Zajac, S. Choudhury, and R. Riedel, Electrochim. Acta 216, 196 (2016).CrossRefGoogle Scholar
  25. 25.
    M. Wilamowska-Zawlocka, P. Puczkarski, Z. Grabowska, J. Kaspar, M. Graczyk-Zajac, R. Riedel, G.D. Sorarù, RSC Adv. 6, 104597 (2016).CrossRefGoogle Scholar
  26. 26.
    Y.D. Blum, D.B. MacQueen, and H.-J. Kleebe, J. Eur. Ceram. Soc. 25, 143 (2005).CrossRefGoogle Scholar
  27. 27.
    G. Gregori, H.-J. Kleebe, Y.D. Blum, and F. Babonneau, Int. J. Mater. Res. 97, 710 (2006).Google Scholar
  28. 28.
    S.J. Widgeon, S. Sen, G. Mera, E. Ionescu, R. Riedel, and A. Navrotsky, Chem. Mater. 22, 6221 (2010).CrossRefGoogle Scholar
  29. 29.
    S. Martínez-Crespiera, E. Ionescu, H.-J. Kleebe, R. Riedel, J. Eur. Ceram. Soc. 31, 913 (2011).CrossRefGoogle Scholar
  30. 30.
    G. Mera, A. Navrotsky, S. Sen, H.-J. Kleebe, and R. Riedel, J. Mater. Chem. A 1, 3826 (2013).CrossRefGoogle Scholar
  31. 31.
    J. Cordelair and P. Greil, J. Eur. Ceram. Soc. 20, 1947 (2000).CrossRefGoogle Scholar
  32. 32.
    H.-J. Kleebe and Y.D. Blum, J. Eur. Ceram. Soc. 28, 1037 (2008).CrossRefGoogle Scholar
  33. 33.
    M. Haaks, J. Kaspar, A. Franz, M. Graczyk-Zajac, R. Riedel, and M. Vogel, Solid State Ion. 287, 28 (2016).CrossRefGoogle Scholar
  34. 34.
    J. Kaspar, M. Graczyk-Zajac, and R. Riedel, Electrochim. Acta 115, 665 (2014).CrossRefGoogle Scholar
  35. 35.
    P. Kroll, MRS Proc. 1313 (2011). doi: 10.1557/opl.2011.707.
  36. 36.
    J. Crank, Trans. Faraday Soc. 53, 1083 (1957).CrossRefGoogle Scholar
  37. 37.
    P.B. Weisz, J. Chem. Soc., Faraday Trans. 1 63, 1801 (1967).CrossRefGoogle Scholar
  38. 38.
    P.B. Weisz and J.S. Hicks, J. Chem. Soc., Faraday Trans. 1 63, 1807 (1967).CrossRefGoogle Scholar
  39. 39.
    R.J. Ott and P. Rys, J. Chem. Soc., Faraday Trans. 1 69, 1694 (1973).CrossRefGoogle Scholar
  40. 40.
    R.J. Ott and P. Rys, J. Chem. Soc., Faraday Trans. 1 69, 1705 (1973).CrossRefGoogle Scholar
  41. 41.
    D.B. Hibbert, J.J. Gooding, and P. Erokhin, Langmuir 18, 1770 (2002).CrossRefGoogle Scholar
  42. 42.
    M. Kočičik, A. Micke, Langmuir 11, 3042 (1995).CrossRefGoogle Scholar
  43. 43.
    A.D. Drozdov, J.D Christiansen, R.K. Gupta, A.P. Shah, J. Polym. Sci. Pol. Phys. 41, 476 (2003)Google Scholar
  44. 44.
    J.P. Simonin, J. Bouté, Revista Mexicana de Ingenieria Quimica 15, 161 (2016).Google Scholar
  45. 45.
    T. Hori, R. J. Ott, and P. Rys, Polym. Eng. Sci. 20, 264 (1980).CrossRefGoogle Scholar
  46. 46.
    B. Ostrowska, A. Narebska, and H. Krzystek, J. Appl. Polym. Sci. 26, 643 (1981).CrossRefGoogle Scholar
  47. 47.
    P. Rys, Text. Res. J. 43, 24 (1973).CrossRefGoogle Scholar
  48. 48.
    P.B. Weisz and H. Zollinger, J. Chem. Soc., Faraday Trans. 1 63, 1815 (1967).CrossRefGoogle Scholar
  49. 49.
    P.B. Weisz and H. Zollinger, J. Chem. Soc., Faraday Trans. 1 64, 1693 (1968).CrossRefGoogle Scholar
  50. 50.
    J. Ožbolt, G. Balabanić, G. Periškić, and M. Kušter, Constr. Build. Mater. 24, 1638 (2010).CrossRefGoogle Scholar
  51. 51.
    A.D. Drozdov, Acta Mech. 225, 2987 (2014).MathSciNetCrossRefGoogle Scholar
  52. 52.
    A.D. Drozdov, Mech. Res. Commun. 57, 67 (2014).CrossRefGoogle Scholar
  53. 53.
    T. Zhang, Z. Guo, Y. Wang, and J. Zhu, J. Appl. Phys. 115, 083504 (2014).CrossRefGoogle Scholar
  54. 54.
    J. Svoboda and F.D. Fischer, Acta Mater. 60, 1211 (2012).CrossRefGoogle Scholar
  55. 55.
    F.D. Fischer, G. Mori, and J. Svoboda, Corros. Sci. 76, 382 (2013).CrossRefGoogle Scholar
  56. 56.
    J. Svoboda and F.D. Fischer, Comput. Mater. Sci. 78, 39 (2013).CrossRefGoogle Scholar
  57. 57.
    J. Svoboda, J. Stopka, and F.D. Fischer, Comput. Mater. Sci. 95, 309 (2014).CrossRefGoogle Scholar
  58. 58.
    J. Svoboda and F. D. Fischer, Comput. Mater. Sci. 127, 136 (2017).CrossRefGoogle Scholar
  59. 59.
    F.J.W. Roughton, J. Chem. Soc., Faraday Trans. 1 56, 1085 (1960).MathSciNetCrossRefGoogle Scholar
  60. 60.
    P. Stein and B. Xu, Comput. Methods Appl. Mech. Eng. 268, 225 (2014).MathSciNetCrossRefGoogle Scholar
  61. 61.
    P. Stein, Y. Zhao, and B.-X. Xu, J. Power Sources 332, 154 (2016).CrossRefGoogle Scholar
  62. 62.
    Y. Zhao, P. Stein, and B.-X. Xu, Comput. Methods Appl. Mech. Eng. 297, 325 (2015).MathSciNetCrossRefGoogle Scholar
  63. 63.
    Y. Zhao, B.-X. Xu, P. Stein, and D. Gross, Comput. Methods Appl. Mech. Eng. 312, 428 (2016).MathSciNetCrossRefGoogle Scholar
  64. 64.
    P. Barai and P.P. Mukherjee, J. Electrochem. Soc. 163, A1120 (2016).CrossRefGoogle Scholar
  65. 65.
    J. Crank, The mathematics of diffusion, 2nd ed. (Oxford: Oxford University Press, 1975), pp. 326–327.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Peter Stein
    • 1
    Email author
  • Dragoljub Vrankovic
    • 2
  • Magdalena Graczyk-Zajac
    • 2
  • Ralf Riedel
    • 2
  • Bai-Xiang Xu
    • 1
  1. 1.Mechanics of Functional Materials Division, Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Dispersive Solids Division, Institute of Materials ScienceTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations