, Volume 69, Issue 9, pp 1478–1483 | Cite as

Elemental and Chemical Mapping of High Capacity Intermetallic Li-ion Anodes with Transmission X-ray Microscopy

  • Logan J. Ausderau
  • Hernando J. Gonzalez Malabet
  • Joseph R. Buckley
  • Vincent De Andrade
  • Yijin Liu
  • George J. Nelson


X-ray nanotomography has been applied toward the three-dimensional (3D) imaging of a Li-ion battery alloy anode material (Cu6Sn5), and subsequent segmentation and analysis has been performed to distinguish the alloy material from its constituent components. Follow-on x-ray absorption near edge structure imaging was performed yielding absorption spectra for Cu, Cu6Sn5, and Li2CuSn. Analyses based on these spectra were performed on two-dimensional (2D) images of samples from cycled electrodes to assess chemical composition in Cu-containing phases. The capability to distinguish the different materials within mixed samples suggests that microstructure and composition changes resulting from lithiation and delithiation in Cu6Sn5 may be observed and better understood with 3D x-ray imaging methods. These methods are expected to be applicable to other intermetallic tin alloy electrodes.



Financial support from an NSF Collaborative Research Award (CBET-1438683) is gratefully acknowledged. This research used resources of the Advanced Photon Source and the Stanford Synchrotron Radiation Lightsource. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

Supplementary material

11837_2017_2416_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5801 kb)


  1. 1.
    J. Wang, Y.K. Chen-Wiegart, and J. Wang, Angew. Chem. Int. Ed. 53, 4460 (2014).CrossRefGoogle Scholar
  2. 2.
    J. Gonzalez, K. Sun, M. Huang, S. Dillon, I. Chasiotis, and J. Lambros, J. Power Sources 285, 205 (2015).CrossRefGoogle Scholar
  3. 3.
    H.-C. Shin and M. Liu, Adv. Funct. Mater. 15, 582 (2005).CrossRefGoogle Scholar
  4. 4.
    K.D. Kepler, J.T. Vaughey, and M.M. Thackeray, J. Power Sources 81, 383 (1999).CrossRefGoogle Scholar
  5. 5.
    X.-Y. Fan, Y.-X. Shi, J.-J. Wang, J. Wang, X.-Y. Shi, L. Xu, L. Gou, and D.-L. Li, Solid State Ion. 237, 1 (2013).CrossRefGoogle Scholar
  6. 6.
    D. Larcher, L.Y. Beaulieu, D.D. MacNeil, and J.R. Dahn, J. Electrochem. Soc. 147, 1658 (2000).CrossRefGoogle Scholar
  7. 7.
    D.H. Nam, R.H. Kim, D.W. Han, and H.S. Kwon, Electrochim. Acta 66, 126 (2012).CrossRefGoogle Scholar
  8. 8.
    I. Panchenko, K. Croes, I. De Wolf, J. De Messemaeker, E. Beyne, and K.-J. Wolter, Microelectron. Eng. 117, 26 (2014).CrossRefGoogle Scholar
  9. 9.
    C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn, Chem. Soc. Rev. 39, 3115 (2010).CrossRefGoogle Scholar
  10. 10.
    W. Pu, X. He, J. Ren, C. Wan, and C. Jiang, Electrochim. Acta 50, 4140 (2005).CrossRefGoogle Scholar
  11. 11.
    N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, and I. Yonezu, J. Power Sources 107, 48 (2002).CrossRefGoogle Scholar
  12. 12.
    L. Trahey, J.T. Vaughey, H.H. Kung, and M.M. Thackeray, J. Electrochem. Soc. 156, A385 (2009).CrossRefGoogle Scholar
  13. 13.
    L. Xue, Z. Fu, Y. Yao, T. Huang, and A. Yu, Electrochim. Acta 55, 7310 (2010).CrossRefGoogle Scholar
  14. 14.
    V. De Andrade, A. Deriy, M. J. Wojcik, D. Gürsoy, D. Shu, K. Fezzaa, and F. De Carlo, SPIE Newsroom (2016). doi: 10.1117/2.1201604.006461.Google Scholar
  15. 15.
    F.R. Brushett, L. Trahey, X. Xiao, J.T. Vaughey, and A.C.S. Appl, Mater. Interfaces 6, 4524 (2014).CrossRefGoogle Scholar
  16. 16.
    F. Meirer, J. Cabana, Y. Liu, A. Mehta, J.C. Andrews, and P. Pianetta, J. Synchrotron Radiat. 18, 773 (2011).CrossRefGoogle Scholar
  17. 17.
    J.C. Andrews, S. Brennan, P. Pianetta, H. Ishii, J. Gelb, M. Feser, J. Rudati, A. Tkachuk, and W. Yun, J. Phys: Conf. Ser. 186, 12002 (2009).Google Scholar
  18. 18.
    Y. Liu, F. Meirer, P.A. Williams, J. Wang, J.C. Andrews, and P. Pianetta, J. Synchrotron Radiat. 19, 281 (2012).CrossRefGoogle Scholar
  19. 19.
    H. Jin, R. You, S. Zhou, K. Ma, M. Meng, L. Zheng, J. Zhang, and T. Hu, Int. J. Hydrog. Energy 40, 3919 (2015). doi: 10.1016/j.ijhydene.2015.01.086 CrossRefGoogle Scholar
  20. 20.
    T. Toyoda, T. Masujima, H. Shiwaku, A. Iida, H. Kawata, M. Ando, H. Nakanishi, S. Endo, and T. Irie, Jpn. J. Appl. Phys. 29, 255 (1990). doi: 10.7567/JJAPS.29S1.255 CrossRefGoogle Scholar
  21. 21.
    L.S. Kau, D.J. Spira-Solomon, J.E. Penner-Hahn, K.O. Hodgson, and E.I. Solomon, J. Am. Chem. Soc. 109, 6433 (1987).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Logan J. Ausderau
    • 1
  • Hernando J. Gonzalez Malabet
    • 1
  • Joseph R. Buckley
    • 1
  • Vincent De Andrade
    • 2
  • Yijin Liu
    • 3
  • George J. Nelson
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Advanced Photon SourceArgonne National LaboratoryLemontUSA
  3. 3.Stanford Synchrotron Radiation LightsourceSLAC National Accelerator FacilityMenlo ParkUSA

Personalised recommendations