Advertisement

JOM

, Volume 69, Issue 9, pp 1532–1536 | Cite as

Mesoscale Evaluation of Titanium Silicide Monolayer as a Cathode Host Material in Lithium–Sulfur Batteries

  • Zhixiao Liu
  • Perla B. Balbuena
  • Partha P. MukherjeeEmail author
Article

Abstract

Two-dimensional materials are competitive candidates as cathode materials in lithium–sulfur batteries for immobilizing soluble polysulfides and mitigating the shuttle effect. In this study, a mesoscale modeling approach, which combines first-principles simulation and kinetic Monte Carlo simulation, is employed to evaluate titanium silicide (Ti2Si and TiSi2) monolayers as potential host materials in lithium–sulfur batteries. It is found that the Ti2Si monolayer has much stronger affinities to Li2S x (x = 1, 2, 4) molecules than does the TiSi2 monolayer. Also, Ti2Si can facilitate the dissociation of long-chain Li2S4 to LiS2. On the other hand, TiSi2 can only provide a weak chemical interaction for trapping soluble Li2S4. Therefore, the Ti2Si monolayer can be considered to be the next-generation cathode material for lithium–sulfur batteries. Nevertheless, the strong interaction between Ti2Si and Li2S also causes fast surface passivation. How to control the Li2S precipitation on Ti2Si should be answered by future studies.

Notes

Acknowledgements

The information, data, or work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award DEEE0006832. Supercomputer resources provided by the Texas A&M University High Performance Computer Center are gratefully acknowledged.

References

  1. 1.
    J.-M. Tarascon and M. Armand, Nature 414, 359 (2001).CrossRefGoogle Scholar
  2. 2.
    M. Armand and J.-M. Tarascon, Nature 451, 652 (2008).CrossRefGoogle Scholar
  3. 3.
    M. Ashuri, Q.R. He, and L.L. Shaw, Nanoscale 8, 74 (2016).CrossRefGoogle Scholar
  4. 4.
    A. Casimir, H.G. Zhang, O. Ogoke, J.C. Amine, J. Lu, and G. Wu, Nano Energy 27, 359 (2016).CrossRefGoogle Scholar
  5. 5.
    M. Ko, P. Oh, S. Chae, W. Cho, and J. Cho, Small 11, 4058 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Luo, B.N. Liu, J.Y. Zheng, G. Chu, K.F. Zhong, H. Li, X.J. Huang, and L.Q. Chen, J. Electrochem. Soc. 162, A2509 (2015).CrossRefGoogle Scholar
  7. 7.
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.-M. Tarascon, Nat. Mater. 11, 19 (2012).CrossRefGoogle Scholar
  8. 8.
    Y.V. Mikhaylik and J.R. Akridge, J. Electrochem. Soc. 151, A1969 (2004).CrossRefGoogle Scholar
  9. 9.
    F.Y. Fan, W.C. Carter, and Y.M. Chiang, Adv. Mater. 27, 5203 (2015).CrossRefGoogle Scholar
  10. 10.
    Z. Liu, P.P. Mukherjee, and A.C.S. Appl, Mater. Interfaces 9, 5263 (2017).CrossRefGoogle Scholar
  11. 11.
    X. Liang, A. Garsuch, and L.F. Nazar, Angew. Chem. 127, 3979 (2015).CrossRefGoogle Scholar
  12. 12.
    Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, and Y. Cui, Nano Lett. 15, 3780 (2015).CrossRefGoogle Scholar
  13. 13.
    Z. Li, J. Zhang, and X.W.D. Lou, Angew. Chem. Int. Ed. 54, 12886 (2015).CrossRefGoogle Scholar
  14. 14.
    E.P. Kamphaus and P.B. Balbuena, J. Phys. Chem. C 120, 4296 (2016).CrossRefGoogle Scholar
  15. 15.
    Z. Liu, P.B. Balbuena, and P.P. Mukherjee, J. Coord. Chem. 69, 2090 (2016).CrossRefGoogle Scholar
  16. 16.
    G. Babu, N. Masurkar, H. Al Salem, and L.M.R. Arava, J. Am. Chem. Soc. 139, 171 (2017).CrossRefGoogle Scholar
  17. 17.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  18. 18.
    G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).CrossRefGoogle Scholar
  19. 19.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  20. 20.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  21. 21.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  22. 22.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetCrossRefGoogle Scholar
  23. 23.
    Q. Wu, J.-J. Zhang, P. Hao, Z. Ji, S. Dong, C. Ling, Q. Chen, and J. Wang, J. Phys. Chem. Lett. 7, 3723 (2016).CrossRefGoogle Scholar
  24. 24.
    Z. Liu, P.B. Balbuena, and P.P. Mukherjee, J. Phys. Chem. Lett. 8, 1324 (2017).CrossRefGoogle Scholar
  25. 25.
    E. Sanville, S.D. Kenny, R. Smith, and G. Henkelman, J. Comput. Chem. 28, 899 (2007).CrossRefGoogle Scholar
  26. 26.
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Zhixiao Liu
    • 1
  • Perla B. Balbuena
    • 2
  • Partha P. Mukherjee
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Chemical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations