, Volume 69, Issue 9, pp 1469–1477 | Cite as

X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials

  • Gregory A. Horrocks
  • Luis R. De Jesus
  • Justin L. Andrews
  • Sarbajit BanerjeeEmail author


Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.



Our work on x-ray spectroscopy of electron correlated materials has been primarily supported by the National Science Foundation under DMR 1504702. We gratefully acknowledge valuable insight and longstanding collaborations with Daniel Fischer, Cherno Jaye (NIST), Alexander Moewes (University of Saskatchewan), Louis F. Piper (Binghamton U.), David Prendergast (LBNL), Lucia Zuin, and Jian Wang (CLS). A portion of the research described in this review was performed at the Canadian Light Source.


  1. 1.
    J.B. Goodenough and K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
  2. 2.
    M.S. Whittingham, Chem. Rev. 104, 4271 (2004).CrossRefGoogle Scholar
  3. 3.
    B. Orvananos, T.R. Ferguson, H.-C. Yu, M.Z. Bazant, and K. Thornton, J. Electrochem. Soc. 161, A535 (2014).CrossRefGoogle Scholar
  4. 4.
    W.C. Chueh, F. El Gabaly, J.D. Sugar, N.C. Bartelt, A.H. McDaniel, K.R. Fenton, K.R. Zavadil, T. Tyliszczak, W. Lai, and K.F. McCarty, Nano Lett. 13, 866 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Guo, R.B. Smith, Z. Yu, D.K. Efetov, J. Wang, P. Kim, M.Z. Bazant, and L.E. Brus, J. Phys. Chem. Lett. 7, 2151 (2016).CrossRefGoogle Scholar
  6. 6.
    H. Ghassemi, M. Au, N. Chen, P.A. Heiden, and R.S. Yassar, ACS Nano 5, 7805 (2011).CrossRefGoogle Scholar
  7. 7.
    F. Yang, Y. Liu, S.K. Martha, Z. Wu, J.C. Andrews, G.E. Ice, P. Pianetta, and J. Nanda, Nano Lett. 14, 4334 (2014).CrossRefGoogle Scholar
  8. 8.
    L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye, L. Wangoh, J. Wang, D.A. Fischer, L.F.J. Piper, D. Prendergast, and S. Banerjee, Nat. Commun. 7, 12022 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Lim, Y. Li, D.H. Alsem, H. So, S.C. Lee, P. Bai, D.A. Cogswell, X. Liu, N. Jin, Y. Yu, N.J. Salmon, D.A. Shapiro, M.Z. Bazant, T. Tyliszczak, and W.C. Chueh, Science 353, 566 (2016).CrossRefGoogle Scholar
  10. 10.
    G.A. Horrocks, E.J. Braham, Y. Liang, L.R. De Jesus, J. Jude, J.M. Velázquez, D. Prendergast, and S. Banerjee, J. Phys. Chem. C 120, 23922 (2016).CrossRefGoogle Scholar
  11. 11.
    G.A. Horrocks, M.F. Likely, J.M. Velazquez, and S. Banerjee, J. Mater. Chem. A 1, 15265 (2013).CrossRefGoogle Scholar
  12. 12.
    P. Stein, Y. Zhao, and B.X. Xu, J. Power Sources 332, 154 (2016).CrossRefGoogle Scholar
  13. 13.
    A.P. Hitchcock, J. Electron Spectros. Relat. Phenomena 200, 49 (2015).CrossRefGoogle Scholar
  14. 14.
    M.S. Whittingham, J. Electrochem. Soc. 123, 315 (1976).CrossRefGoogle Scholar
  15. 15.
    C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Nat. Mater. 7, 665 (2008).CrossRefGoogle Scholar
  16. 16.
    Y.-C. Lin, B. Wen, K.M. Wiaderek, S. Sallis, H. Liu, S.H. Lapidus, O.J. Borkiewicz, N.F. Quackenbush, N.A. Chernova, K. Karki, F. Omenya, P.J. Chupas, L.F.J. Piper, M.S. Whittingham, K.W. Chapman, and S.P. Ong, Chem. Mater. 28, 1794 (2016).CrossRefGoogle Scholar
  17. 17.
    H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chupas, and C.P. Grey, Science 344, 1451 (2014).CrossRefGoogle Scholar
  18. 18.
    G. Brunetti, D. Robert, P. Bayle-Guillemaud, J.L. Rouvière, E.F. Rauch, J.F. Martin, J.F. Colin, F. Bertin, and C. Cayron, Chem. Mater. 23, 4515 (2011).CrossRefGoogle Scholar
  19. 19.
    B.J. Schultz, R.V. Dennis, V. Lee, and S. Banerjee, Nanoscale 6, 3444 (2014).CrossRefGoogle Scholar
  20. 20.
    Y. Liang, J. Vinson, S. Pemmeraju, W.S. Drisdell, E.L. Shirley, and D. Prendergast, Phys. Rev. Lett. 118, 1 (2017).Google Scholar
  21. 21.
    J. McBreen, J. Solid State Electrochem. 13, 1051 (2009).CrossRefGoogle Scholar
  22. 22.
    C.J. Patridge, C. Jaye, T.A. Abtew, B. Ravel, D.A. Fischer, A.C. Marschilok, P. Zhang, K.J. Takeuchi, E.S. Takeuchi, and S. Banerjee, J. Phys. Chem. C 115, 14437 (2011).CrossRefGoogle Scholar
  23. 23.
    P. Chaurand, J. Rose, V. Briois, M. Salome, O. Proux, V. Nassif, L. Olivi, J. Susini, J.-L. Hazemann, and J.-Y. Bottero, J. Phys. Chem. B 111, 5101 (2007).CrossRefGoogle Scholar
  24. 24.
    D. Maganas, M. Roemelt, M. Hävecker, A. Trunschke, A. Knop-Gericke, R. Schlögl, and F. Neese, Phys. Chem. Chem. Phys. 15, 7260 (2013).CrossRefGoogle Scholar
  25. 25.
    J.M. Velazquez, C. Jaye, D.A. Fischer, and S. Banerjee, J. Phys. Chem. C 113, 7639 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Ikeno, F.M.F. de Groot, E. Stavitski, and I. Tanaka, J. Phys.: Condens. Matter 21, 104208 (2009).Google Scholar
  27. 27.
    H. Ade and A.P. Hitchcock, Polymer (Guildf) 49, 643 (2008).CrossRefGoogle Scholar
  28. 28.
    P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, Science 321, 379 (2008).CrossRefGoogle Scholar
  29. 29.
    M. Lerotic, C. Jacobsen, T. Schäfer, and S. Vogt, Ultramicroscopy 100, 35 (2004).CrossRefGoogle Scholar
  30. 30.
    T.M. Tolhurst, B. Leedahl, J.L. Andrews, P.M. Marley, S. Banerjee, and A. Moewes, Phys. Chem. Chem. Phys. 18, 15798 (2016).CrossRefGoogle Scholar
  31. 31.
    D. Wang and L. Zuin, J. Power Sources 337, 100 (2017).CrossRefGoogle Scholar
  32. 32.
    M.S. Whittingham, J. Solid State Chem. 29, 303 (1979).CrossRefGoogle Scholar
  33. 33.
    L.F.J. Piper, N.F. Quackenbush, S. Sallis, D.O. Scanlon, G.W. Watson, K.-W. Nam, X.-Q. Yang, K.E. Smith, F. Omenya, N.A. Chernova, and M.S. Whittingham, J. Phys. Chem. C 117, 10383 (2013).CrossRefGoogle Scholar
  34. 34.
    V. Eyert and K.-H. Höck, Phys. Rev. B 57, 12727 (1998).CrossRefGoogle Scholar
  35. 35.
    L. Whittaker, J.M. Velazquez, and S. Banerjee, Cryst. Eng. Comm. 13, 5328 (2011).CrossRefGoogle Scholar
  36. 36.
    J. Galy, J. Solid State Chem. 100, 229 (1992).CrossRefGoogle Scholar
  37. 37.
    G.W. Coulston, R. Bare, H. Simon, K. Kung, G.K. Birkeland, R. Bethke, N. Herron, N. Harlow, and P.L. Lee, Science 275, 191 (1997).CrossRefGoogle Scholar
  38. 38.
    Y. Li, F. El Gabaly, T.R. Ferguson, R.B. Smith, N.C. Bartelt, J.D. Sugar, K.R. Fenton, D.A. Cogswell, A.L.D. Kilcoyne, T. Tyliszczak, M.Z. Bazant, and W.C. Chueh, Nat. Mater. 13, 1149 (2014).CrossRefGoogle Scholar
  39. 39.
    P. Bai, D.A. Cogswell, and M.Z. Bazant, Nano Lett. 11, 4890 (2011).CrossRefGoogle Scholar
  40. 40.
    J. Wang, Y.K. Chen-Wiegart, and J. Wang, Nat. Commun. 5, 1 (2014).Google Scholar
  41. 41.
    X. Zhang, M. van Hulzen, D.P. Singh, A. Brownrigg, J.P. Wright, N.H. van Dijk, and M. Wagemaker, Nat. Commun. 6, 8333 (2015).CrossRefGoogle Scholar
  42. 42.
    L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, and J.M. Tarascon, Chem. Mater. 18, 5520 (2006).CrossRefGoogle Scholar
  43. 43.
    S.-P. Badi, M. Wagemaker, B.L. Ellis, D.P. Singh, W.J.H. Borghols, W.H. Kan, D.H. Ryan, F.M. Mulder, and L.F. Nazar, J. Mater. Chem. 21, 10085 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA
  2. 2.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations