X-ray Spectroscopy and Imaging as Multiscale Probes of Intercalation Phenomena in Cathode Materials
- 344 Downloads
- 3 Citations
Abstract
Intercalation phenomena are at the heart of modern electrochemical energy storage. Nevertheless, as out-of-equilibrium processes involving concomitant mass and charge transport, such phenomena can be difficult to engineer in a predictive manner. The rational design of electrode architectures requires mechanistic understanding of physical phenomena spanning multiple length scales, from atomistic distortions and electron localization at individual transition metal centers to phase inhomogeneities and intercalation gradients in individual particles and concentration variances across ensembles of particles. In this review article, we discuss the importance of the electronic structure in mediating electrochemical storage and mesoscale heterogeneity. In particular, we discuss x-ray spectroscopy and imaging probes of electronic and atomistic structure as well as statistical regression methods that allow for monitoring of the evolution of the electronic structure as a function of intercalation. The layered α-phase of V2O5 is used as a model system to develop fundamental ideas on the origins of mesoscale heterogeneity.
Notes
Acknowledgements
Our work on x-ray spectroscopy of electron correlated materials has been primarily supported by the National Science Foundation under DMR 1504702. We gratefully acknowledge valuable insight and longstanding collaborations with Daniel Fischer, Cherno Jaye (NIST), Alexander Moewes (University of Saskatchewan), Louis F. Piper (Binghamton U.), David Prendergast (LBNL), Lucia Zuin, and Jian Wang (CLS). A portion of the research described in this review was performed at the Canadian Light Source.
References
- 1.J.B. Goodenough and K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013).CrossRefGoogle Scholar
- 2.M.S. Whittingham, Chem. Rev. 104, 4271 (2004).CrossRefGoogle Scholar
- 3.B. Orvananos, T.R. Ferguson, H.-C. Yu, M.Z. Bazant, and K. Thornton, J. Electrochem. Soc. 161, A535 (2014).CrossRefGoogle Scholar
- 4.W.C. Chueh, F. El Gabaly, J.D. Sugar, N.C. Bartelt, A.H. McDaniel, K.R. Fenton, K.R. Zavadil, T. Tyliszczak, W. Lai, and K.F. McCarty, Nano Lett. 13, 866 (2013).CrossRefGoogle Scholar
- 5.Y. Guo, R.B. Smith, Z. Yu, D.K. Efetov, J. Wang, P. Kim, M.Z. Bazant, and L.E. Brus, J. Phys. Chem. Lett. 7, 2151 (2016).CrossRefGoogle Scholar
- 6.H. Ghassemi, M. Au, N. Chen, P.A. Heiden, and R.S. Yassar, ACS Nano 5, 7805 (2011).CrossRefGoogle Scholar
- 7.F. Yang, Y. Liu, S.K. Martha, Z. Wu, J.C. Andrews, G.E. Ice, P. Pianetta, and J. Nanda, Nano Lett. 14, 4334 (2014).CrossRefGoogle Scholar
- 8.L.R. De Jesus, G.A. Horrocks, Y. Liang, A. Parija, C. Jaye, L. Wangoh, J. Wang, D.A. Fischer, L.F.J. Piper, D. Prendergast, and S. Banerjee, Nat. Commun. 7, 12022 (2016).CrossRefGoogle Scholar
- 9.J. Lim, Y. Li, D.H. Alsem, H. So, S.C. Lee, P. Bai, D.A. Cogswell, X. Liu, N. Jin, Y. Yu, N.J. Salmon, D.A. Shapiro, M.Z. Bazant, T. Tyliszczak, and W.C. Chueh, Science 353, 566 (2016).CrossRefGoogle Scholar
- 10.G.A. Horrocks, E.J. Braham, Y. Liang, L.R. De Jesus, J. Jude, J.M. Velázquez, D. Prendergast, and S. Banerjee, J. Phys. Chem. C 120, 23922 (2016).CrossRefGoogle Scholar
- 11.G.A. Horrocks, M.F. Likely, J.M. Velazquez, and S. Banerjee, J. Mater. Chem. A 1, 15265 (2013).CrossRefGoogle Scholar
- 12.P. Stein, Y. Zhao, and B.X. Xu, J. Power Sources 332, 154 (2016).CrossRefGoogle Scholar
- 13.A.P. Hitchcock, J. Electron Spectros. Relat. Phenomena 200, 49 (2015).CrossRefGoogle Scholar
- 14.M.S. Whittingham, J. Electrochem. Soc. 123, 315 (1976).CrossRefGoogle Scholar
- 15.C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, and F. Weill, Nat. Mater. 7, 665 (2008).CrossRefGoogle Scholar
- 16.Y.-C. Lin, B. Wen, K.M. Wiaderek, S. Sallis, H. Liu, S.H. Lapidus, O.J. Borkiewicz, N.F. Quackenbush, N.A. Chernova, K. Karki, F. Omenya, P.J. Chupas, L.F.J. Piper, M.S. Whittingham, K.W. Chapman, and S.P. Ong, Chem. Mater. 28, 1794 (2016).CrossRefGoogle Scholar
- 17.H. Liu, F.C. Strobridge, O.J. Borkiewicz, K.M. Wiaderek, K.W. Chapman, P.J. Chupas, and C.P. Grey, Science 344, 1451 (2014).CrossRefGoogle Scholar
- 18.G. Brunetti, D. Robert, P. Bayle-Guillemaud, J.L. Rouvière, E.F. Rauch, J.F. Martin, J.F. Colin, F. Bertin, and C. Cayron, Chem. Mater. 23, 4515 (2011).CrossRefGoogle Scholar
- 19.B.J. Schultz, R.V. Dennis, V. Lee, and S. Banerjee, Nanoscale 6, 3444 (2014).CrossRefGoogle Scholar
- 20.Y. Liang, J. Vinson, S. Pemmeraju, W.S. Drisdell, E.L. Shirley, and D. Prendergast, Phys. Rev. Lett. 118, 1 (2017).Google Scholar
- 21.J. McBreen, J. Solid State Electrochem. 13, 1051 (2009).CrossRefGoogle Scholar
- 22.C.J. Patridge, C. Jaye, T.A. Abtew, B. Ravel, D.A. Fischer, A.C. Marschilok, P. Zhang, K.J. Takeuchi, E.S. Takeuchi, and S. Banerjee, J. Phys. Chem. C 115, 14437 (2011).CrossRefGoogle Scholar
- 23.P. Chaurand, J. Rose, V. Briois, M. Salome, O. Proux, V. Nassif, L. Olivi, J. Susini, J.-L. Hazemann, and J.-Y. Bottero, J. Phys. Chem. B 111, 5101 (2007).CrossRefGoogle Scholar
- 24.D. Maganas, M. Roemelt, M. Hävecker, A. Trunschke, A. Knop-Gericke, R. Schlögl, and F. Neese, Phys. Chem. Chem. Phys. 15, 7260 (2013).CrossRefGoogle Scholar
- 25.J.M. Velazquez, C. Jaye, D.A. Fischer, and S. Banerjee, J. Phys. Chem. C 113, 7639 (2009).CrossRefGoogle Scholar
- 26.H. Ikeno, F.M.F. de Groot, E. Stavitski, and I. Tanaka, J. Phys.: Condens. Matter 21, 104208 (2009).Google Scholar
- 27.H. Ade and A.P. Hitchcock, Polymer (Guildf) 49, 643 (2008).CrossRefGoogle Scholar
- 28.P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, Science 321, 379 (2008).CrossRefGoogle Scholar
- 29.M. Lerotic, C. Jacobsen, T. Schäfer, and S. Vogt, Ultramicroscopy 100, 35 (2004).CrossRefGoogle Scholar
- 30.T.M. Tolhurst, B. Leedahl, J.L. Andrews, P.M. Marley, S. Banerjee, and A. Moewes, Phys. Chem. Chem. Phys. 18, 15798 (2016).CrossRefGoogle Scholar
- 31.D. Wang and L. Zuin, J. Power Sources 337, 100 (2017).CrossRefGoogle Scholar
- 32.M.S. Whittingham, J. Solid State Chem. 29, 303 (1979).CrossRefGoogle Scholar
- 33.L.F.J. Piper, N.F. Quackenbush, S. Sallis, D.O. Scanlon, G.W. Watson, K.-W. Nam, X.-Q. Yang, K.E. Smith, F. Omenya, N.A. Chernova, and M.S. Whittingham, J. Phys. Chem. C 117, 10383 (2013).CrossRefGoogle Scholar
- 34.V. Eyert and K.-H. Höck, Phys. Rev. B 57, 12727 (1998).CrossRefGoogle Scholar
- 35.L. Whittaker, J.M. Velazquez, and S. Banerjee, Cryst. Eng. Comm. 13, 5328 (2011).CrossRefGoogle Scholar
- 36.J. Galy, J. Solid State Chem. 100, 229 (1992).CrossRefGoogle Scholar
- 37.G.W. Coulston, R. Bare, H. Simon, K. Kung, G.K. Birkeland, R. Bethke, N. Herron, N. Harlow, and P.L. Lee, Science 275, 191 (1997).CrossRefGoogle Scholar
- 38.Y. Li, F. El Gabaly, T.R. Ferguson, R.B. Smith, N.C. Bartelt, J.D. Sugar, K.R. Fenton, D.A. Cogswell, A.L.D. Kilcoyne, T. Tyliszczak, M.Z. Bazant, and W.C. Chueh, Nat. Mater. 13, 1149 (2014).CrossRefGoogle Scholar
- 39.P. Bai, D.A. Cogswell, and M.Z. Bazant, Nano Lett. 11, 4890 (2011).CrossRefGoogle Scholar
- 40.J. Wang, Y.K. Chen-Wiegart, and J. Wang, Nat. Commun. 5, 1 (2014).Google Scholar
- 41.X. Zhang, M. van Hulzen, D.P. Singh, A. Brownrigg, J.P. Wright, N.H. van Dijk, and M. Wagemaker, Nat. Commun. 6, 8333 (2015).CrossRefGoogle Scholar
- 42.L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, and J.M. Tarascon, Chem. Mater. 18, 5520 (2006).CrossRefGoogle Scholar
- 43.S.-P. Badi, M. Wagemaker, B.L. Ellis, D.P. Singh, W.J.H. Borghols, W.H. Kan, D.H. Ryan, F.M. Mulder, and L.F. Nazar, J. Mater. Chem. 21, 10085 (2011).CrossRefGoogle Scholar