Advertisement

JOM

, Volume 69, Issue 8, pp 1269–1279 | Cite as

Columnar and Equiaxed Solidification of Al-7 wt.% Si Alloys in Reduced Gravity in the Framework of the CETSOL Project

  • G. ZimmermannEmail author
  • L. Sturz
  • H. Nguyen-Thi
  • N. Mangelinck-Noel
  • Y. Z. Li
  • C.-A. Gandin
  • R. Fleurisson
  • G. Guillemot
  • S. McFadden
  • R. P. Mooney
  • P. Voorhees
  • A. Roosz
  • A. Ronaföldi
  • C. Beckermann
  • A. Karma
  • C.-H. Chen
  • N. Warnken
  • A. Saad
  • G.-U. Grün
  • M. Grohn
  • I. Poitrault
  • T. Pehl
  • I. Nagy
  • D. Todt
  • O. Minster
  • W. Sillekens
Article

Abstract

During casting, often a dendritic microstructure is formed, resulting in a columnar or an equiaxed grain structure, or leading to a transition from columnar to equiaxed growth (CET). The detailed knowledge of the critical parameters for the CET is important because the microstructure affects materials properties. To provide unique data for testing of fundamental theories of grain and microstructure formation, solidification experiments in microgravity environment were performed within the European Space Agency Microgravity Application Promotion (ESA MAP) project Columnar-to-Equiaxed Transition in SOLidification Processing (CETSOL). Reduced gravity allows for purely diffusive solidification conditions, i.e., suppressing melt flow and sedimentation and floatation effects. On-board the International Space Station, Al-7 wt.% Si alloys with and without grain refiners were solidified in different temperature gradients and with different cooling conditions. Detailed analysis of the microstructure and the grain structure showed purely columnar growth for nonrefined alloys. The CET was detected only for refined alloys, either as a sharp CET in the case of a sudden increase in the solidification velocity or as a progressive CET in the case of a continuous decrease of the temperature gradient. The present experimental data were used for numerical modeling of the CET with three different approaches: (1) a front tracking model using an equiaxed growth model, (2) a three-dimensional (3D) cellular automaton–finite element model, and (3) a 3D dendrite needle network method. Each model allows for predicting the columnar dendrite tip undercooling and the growth rate with respect to time. Furthermore, the positions of CET and the spatial extent of the CET, being sharp or progressive, are in reasonably good quantitative agreement with experimental measurements.

Notes

Acknowledgements

This work has been carried out as part of the CETSOL European Space Agency microgravity application program (ESTEC Contract Number 14313/01/NL/SH). The authors would like to acknowledge funding by the German BMWi/DLR (FKZ 50WM1443), and the financial support of the Enterprise Ireland via European Space Agency PRODEX Programme (Contract Number 4000107132). A. Karma and C.-H. Chen acknowledge support of NASA Grant NNX14AB34G. The authors acknowledge Hydro-Aluminium Rolled Products GmbH for providing the alloys for the flight samples.

References

  1. 1.
    G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, H. Nguyen Thi, C.-A. Gandin, D.J. Browne, and W.U. Mirihanage, JOP Conference Series 327 (2011).Google Scholar
  2. 2.
    G. Zimmermann, L. Sturz, B. Billia, N. Mangelinck-Noël, D.R. Liu, H. Nguyen Thi, N. Bergeon, C.-A .Gandin, D.J. Browne, Ch Beckermann, D. Tourret, and A. Karma, Mater. Sci. Forum 790, 12 (2014).CrossRefGoogle Scholar
  3. 3.
    D.R. Liu, N. Mangelinck-Noël, C.A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen Thi, and B. Billia, Acta Mater. 64, 253 (2014).CrossRefGoogle Scholar
  4. 4.
    W.U. Mirihanage, D.J. Browne, G. Zimmermann, and L. Sturz, Acta Mater. 60, 6362 (2012).CrossRefGoogle Scholar
  5. 5.
    Y.Z. Li, N. Mangelinck-Noël, H. Nguyen-Thi, G. Zimmermann, L. Sturz, T. Cool, E.B. Gulsoy, and P.W. Voorhees, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).Google Scholar
  6. 6.
    C.A. Gandin, Acta Mater. 48, 2483 (2000).CrossRefGoogle Scholar
  7. 7.
    J.D. Hunt, Mater. Sci. Eng. 65, 75 (1984).CrossRefGoogle Scholar
  8. 8.
    D.J. Browne and J.D. Hunt, Numer. Heat Trans. B 45, 395 (2004).CrossRefGoogle Scholar
  9. 9.
    W.U. Mirihanage and D.J. Browne, Comput. Mater. Sci. 46, 777 (2009).CrossRefGoogle Scholar
  10. 10.
    W.U. Mirihanage, D.J. Browne, L. Sturz, and G. Zimmermann, IOP Conf. Ser. Mater. Sci. Eng. 27 (2011).Google Scholar
  11. 11.
    R.P. Mooney, S. McFadden, M. Rebow, and D.J. Browne, Trans. Indian Inst. Met. 65, 527 (2012).CrossRefGoogle Scholar
  12. 12.
    R.P. Mooney, S. McFadden, Z. Gabalcová, and J. Lapin, Appl. Therm. Eng. 67, 61 (2014).CrossRefGoogle Scholar
  13. 13.
    W.A. Johnson and R.F. Mehl, Trans. Aime 135, 396 (1939).Google Scholar
  14. 14.
    M. Avrami, J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
  15. 15.
    A.N. Kolmogorov, Bull. Acad. Sci. URSS (Sci. Math. Nat.) 3, 355 (1937).Google Scholar
  16. 16.
    T. Carozzani, H. Digonnet, and C.-A. Gandin, Model. Simul. Mater. Sci. Eng. 20, 015010 (2012).CrossRefGoogle Scholar
  17. 17.
    T. Carozzani, Ch.-A. Gandin, H. Digonnet, M. Bellet, K. Zaidat, and Y. Fautrelle, Metall. Mater. Trans. A 44, 873 (2013).CrossRefGoogle Scholar
  18. 18.
    T. Carozzani, Ch.-A. Gandin, and H. Digonnet, Model. Simul. Mater. Sci. Eng. 22, 015012 (2014).CrossRefGoogle Scholar
  19. 19.
    Ch.-A. Gandin, T. Carozzani, H. Digonnet, S. Chen, and G. Guillemot, JOM 65, 1122 (2013).CrossRefGoogle Scholar
  20. 20.
    D.R. Liu, N. Mangelinck-Noël, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, and B. Billia, Acta Mater. 93, 24 (2015).CrossRefGoogle Scholar
  21. 21.
    D.R. Liu, N. Mangelinck-Noël, Ch.-A. Gandin, G. Zimmermann, L. Sturz, H. Nguyen-Thi, B. Billia, and I.O.P. Series, Mater. Sci. Eng. 117, 012009 (2016).Google Scholar
  22. 22.
    D. Tourret, A. Karma, A.J. Clarke, P.J. Gibbs, and S.D. Imhoff, IOP Conf. Ser. Mater. Sci. Eng. 84, 012082 (2015).CrossRefGoogle Scholar
  23. 23.
    D. Tourret and A. Karma, Acta Mater. 120, 240 (2016).CrossRefGoogle Scholar
  24. 24.
    D. Tourret, A.J. Clarke, S.D. Imhoff, P.J. Gibbs, J.W. Gibbs, and A. Karma, JOM 67, 1776 (2015).CrossRefGoogle Scholar
  25. 25.
    J.L. Fife and P.W. Voorhees, Acta Mater. 57, 2418 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Alkemper and P.W. Voorhees, Acta Mater. 49, 897 (2001).CrossRefGoogle Scholar
  27. 27.
    L. Sturz, M. Hamacher, and G. Zimmermann, in Proceedings of the 6th Decennial International Conference on Solidification SP17, in press (2017).Google Scholar
  28. 28.
    A. Ludwig, J. Mogerisch, M. Kolbe, G. Zimmermann, L. Sturz, N. Bergeon, B. Billia, G. Faivre, S. Akamatsu, S. Bottin-Rousseau, and D. Voss, JOM 64, 1097 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • G. Zimmermann
    • 1
    Email author
  • L. Sturz
    • 1
  • H. Nguyen-Thi
    • 2
  • N. Mangelinck-Noel
    • 2
  • Y. Z. Li
    • 2
  • C.-A. Gandin
    • 3
  • R. Fleurisson
    • 3
  • G. Guillemot
    • 3
  • S. McFadden
    • 4
    • 5
  • R. P. Mooney
    • 4
  • P. Voorhees
    • 6
  • A. Roosz
    • 7
  • A. Ronaföldi
    • 7
  • C. Beckermann
    • 8
  • A. Karma
    • 9
  • C.-H. Chen
    • 9
  • N. Warnken
    • 10
  • A. Saad
    • 11
  • G.-U. Grün
    • 12
  • M. Grohn
    • 13
  • I. Poitrault
    • 14
  • T. Pehl
    • 15
  • I. Nagy
    • 16
  • D. Todt
    • 17
  • O. Minster
    • 18
  • W. Sillekens
    • 18
  1. 1.ACCESS e.V.AachenGermany
  2. 2.Universite Aix Marseille, CNRS, IM2NPMarseilleFrance
  3. 3.MINES Paris Tech CEMEFSophia AntipolisFrance
  4. 4.Department of Mechanical and Manufacturing EngineeringTrinity College DublinDublin 2Ireland
  5. 5.Ulster UniversityLondonderryNorthern Ireland, UK
  6. 6.Northwestern UniversityEvanstonUSA
  7. 7.Department of Physical MetallurgyUniversity of MiskolcMiskolc-EgyetemvarosHungary
  8. 8.University of IowaIowa CityUSA
  9. 9.Physics DepartmentNortheastern UniversityBostonUSA
  10. 10.School of Metallurgy and MaterialsUniversity of BirminghamBirminghamUK
  11. 11.TRANSVALORMougins CedexFrance
  12. 12.HYDRO Aluminium Rolled Products GmbHBonnGermany
  13. 13.Incaal GmbHNörvenichGermany
  14. 14.ArcelorMittal IndusteelLe Creusot CedexFrance
  15. 15.Arconic-Köfém Ltd.SzékesfehérvárHungary
  16. 16.INOTAL AluminiumfeldolgozoVarpalotaHungary
  17. 17.NEMAK Györ Kft.GyorHungary
  18. 18.ESTECNoordwijkThe Netherlands

Personalised recommendations