, Volume 69, Issue 9, pp 1646–1653 | Cite as

Reduction Behaviors of Iron, Vanadium and Titanium Oxides in Smelting of Vanadium Titanomagnetite Metallized Pellets

  • Shuai Wang
  • Yufeng GuoEmail author
  • Tao Jiang
  • Lu Yang
  • Feng Chen
  • Fuqiang Zheng
  • Xiaolin Xie
  • Minjun Tang


The complicated reduction behaviors of iron, vanadium and titanium oxides must be accurately controlled for the successful smelting of vanadium titanomagnetite. The aim of this study is to investigate the effects of the binary basicity, MgO content, smelting temperature, duration and reductants on the reduction of iron, vanadium and titanium oxides during the electric furnace smelting of vanadium titanomagnetite metallized pellets. The results demonstrate that the recovery ratios of both iron and vanadium increase as the binary basicity increases from 0.9 to 1.2, whereas the reduction of titanium oxides is mitigated when the basicity is maintained at 1.1. Compared to its weak effect on the recovery ratio of iron, increasing MgO content improves the vanadium recovery ratio. A low content of titanium in molten iron is obtained when the MgO content in the slag is lower than 11%, whereas the titanium content in the molten iron increases as the MgO content increases further. Moreover, the iron and vanadium recovery ratios, and the Ti content in the molten iron, increase with increasing smelting temperature, duration and reductant content.


Vanadium Vanadium Oxide Recovery Ratio Reduction Behavior Molten Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    X.W. Lv, Z.G. Lun, J.Q. Yin, and C.G. Bai, ISIJ Int. 53, 1115 (2013).CrossRefGoogle Scholar
  2. 2.
    Y.F. Guo, S.S. Liu, T. Jiang, G.Z. Qiu, and F. Chen, Hydrometallurgy 147–148, 134 (2014).CrossRefGoogle Scholar
  3. 3.
    F.Q. Zheng, F. Chen, Y.F. Guo, T. Jiang, A.Y. Travyanov, and G.Z. Qiu, JOM 68, 1476 (2016).CrossRefGoogle Scholar
  4. 4.
    P.R. Taylor, S.A. Shuey, E.E. Vidal, and J.C. Gomez, Miner. Metall. Process. 23, 80 (2006).Google Scholar
  5. 5.
    W.G. Fu, Y.C. Wen, and H.E. Xie, J. Iron. Steel Res. Int. 18, 7 (2011).CrossRefGoogle Scholar
  6. 6.
    D.S. Chen, L.S. Zhao, Y.H. Liu, T. Qi, J.C. Wang, and L.N. Wang, J. Hazard. Mater. 244–245, 588 (2013).CrossRefGoogle Scholar
  7. 7.
    S.Y. Chen and M.S. Chu, J. S. Afr. Inst. Min. Metall. 114, 481 (2014).Google Scholar
  8. 8.
    Y. Sun, H.Y. Zheng, Y. Dong, X. Jiang, Y.S. Shen, and F.M. Shen, Int. J. Miner. Process. 142, 119 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Zhao, L. Wang, D. Chen, H. Zhao, Y. Liu, and T. Qi, Trans. Nonferrous Met. Soc. China 25, 1325 (2015).CrossRefGoogle Scholar
  10. 10.
    S. Samanta, S. Mukherjee, and R. Dey, JOM 67, 467 (2015).CrossRefGoogle Scholar
  11. 11.
    M.Y. Wang, S.F. Zhou, X.W. Wang, B.F. Chen, H.X. Yang, S.K. Wang, and P.F. Luo, JOM 68, 2698 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. Peng and J.Y. Hwang, Int. Mater. Rev. 60, 30 (2015).CrossRefGoogle Scholar
  13. 13.
    Y.L. Zhen, G.H. Zhang, and K.C. Chou, Metall. Mater. Trans. B 46, 155 (2015).CrossRefGoogle Scholar
  14. 14.
    W. Geyser, W.S. Steinberg, and J. Nell, J. S. Afr. Inst. Min. Metall. 111, 707 (2011).Google Scholar
  15. 15.
    V.E. Roshchin, A.V. Asanov, and A.V. Roshchin, Russ. Metall. 11, 1001 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Wang, Xi’an University of Architecture and Technology, Master Thesis (2014).Google Scholar
  17. 17.
    E.H. Wu, University of Science and Technology, Beijing, Ph.D Thesis (2016).Google Scholar
  18. 18.
    L. Zhang, L.N. Zhang, M.Y. Wang, T.P. Lou, Z.T. Sui, and J.S. Jang, J. Non-Cryst. Solids 352, 123 (2006).CrossRefGoogle Scholar
  19. 19.
    E. Wearing, J. Mater. Sci. 18, 1629 (1983).CrossRefGoogle Scholar
  20. 20.
    S. Ren, Q.C. Liu, J.L. Zhang, M. Chen, X.D. Ma, and B.J. Zhao, Ironmak. Steelmak. 42, 117 (2015).CrossRefGoogle Scholar
  21. 21.
    T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Metals 6, 107 (2016).CrossRefGoogle Scholar
  22. 22.
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, Calphad 33, 295 (2009).CrossRefGoogle Scholar
  23. 23.
    T. Hu, X.W. Lv, C.G. Bai, Z.G. Lun, and G.B. Qiu, Metall. Mater. Trans. B 44, 252 (2013).CrossRefGoogle Scholar
  24. 24.
    H.G. Du, Principles of Blast Furnaces Melting Vanadium-Titanium Magnetite (Beijing: Science Press, 1996), p. 108.Google Scholar
  25. 25.
    X.H. Huang, Principles of Iron and Steel Metallurgy, 4th ed. (Beijing: Metallurgical Industry Press, 2013), pp. 61, 296, 439.Google Scholar
  26. 26.
    M.X. Fang and H.S. Chen, Mater. Sci. Eng. Powder Metall. 11, 329 (2006).Google Scholar
  27. 27.
    A. Shankar, M.R.G. Rnerup, A.K. Lahiri, and S. Seetharaman, Metall. Mater. Trans. B 38, 911 (2007).CrossRefGoogle Scholar
  28. 28.
    P.C. Li and X.J. Ning, Metall. Mater. Trans. B 47, 446 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Shuai Wang
    • 1
  • Yufeng Guo
    • 1
    Email author
  • Tao Jiang
    • 1
  • Lu Yang
    • 1
  • Feng Chen
    • 1
  • Fuqiang Zheng
    • 1
  • Xiaolin Xie
    • 1
  • Minjun Tang
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Taiyuan Iron and Steel (Group) Co., Ltd.TaiyuanChina

Personalised recommendations