, Volume 69, Issue 5, pp 814–821 | Cite as

Comparing EAM Potentials to Model Slip Transfer of Sequential Mixed Character Dislocations Across Two Symmetric Tilt Grain Boundaries in Ni

  • Shuozhi Xu
  • Liming Xiong
  • Youping Chen
  • David L. McDowellEmail author


Slip transfer via sequential pile-up dislocations across grain boundaries (GBs) plays an important role in plastic deformation in polycrystalline face-centered cubic (FCC) metals. In this work, large scale concurrent atomistic-continuum (CAC) method simulations are performed to address the slip transfer of mixed character dislocations across GBs in FCC Ni. Two symmetric tilt GBs, a Σ3{111} coherent twin boundary (CTB) and a Σ11{113} symmetric tilt GB (STGB), are investigated using five different fits to the embedded-atom method (EAM) interatomic potential to assess the variability of predicted dislocation-interface reaction. It is shown that for the Σ3 CTB, two of these potentials predict dislocation transmission while the other three predict dislocation absorption. In contrast, all five fits to the EAM potential predict that dislocations are absorbed by the Σ11 STGB. Simulation results are examined in terms of several slip transfer criteria in the literature, highlighting the complexity of dislocation/GB interactions and the significance of multiscale modeling of the slip transfer process.


Screw Dislocation Partial Dislocation Interatomic Potential Symmetric Tilt Coherent Twin Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



These results are based upon work supported by the National Science Foundation as a collaborative effort between Georgia Tech (CMMI-1232878) and University of Florida (CMMI-1233113). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. LX acknowledges the support from the Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0006539. The work of LX was also supported in part by the National Science Foundation under Award Number CMMI-1536925. The authors thank Dr. Dengke Chen and Dr. Benjamin Szajewski for helpful discussions, Dr. Stephen M. Foiles for providing the tabulated Foiles-EAM potential file, and Dr. Alexander Stukowski for providing the dislocation extraction algorithm code. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

Supplementary material

11837_2017_2302_MOESM1_ESM.docx (190 kb)
Supplementary material 1 (DOCX 190 kb)


  1. 1.
    J.P. Hirth and J. Lothe, Theory of Dislocations (Hoboken: Wiley, 1982).zbMATHGoogle Scholar
  2. 2.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, npj Comput. Mater. 2, 15016 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Wang, JOM 67, 1515 (2015).CrossRefGoogle Scholar
  4. 4.
    D.E. Spearot and M.D. Sangid, Curr. Opin. Solid State Mater. Sci. 18, 188 (2014).CrossRefGoogle Scholar
  5. 5.
    J. Kacher and I.M. Robertson, Acta Mater. 60, 6657 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Curr. Opin. Solid State Mater. Sci. 18, 227 (2014).CrossRefGoogle Scholar
  7. 7.
    D.L. McDowell, Int. J. Plast 26, 1280 (2010).CrossRefGoogle Scholar
  8. 8.
    B. Liu, D. Raabe, P. Eisenlohr, F. Roters, A. Arsenlis, and G. Hommes, Acta Mater. 59, 7125 (2011).CrossRefGoogle Scholar
  9. 9.
    M. Dewald and W. Curtin, Model. Simul. Mater. Sci. Eng. 19, 055002 (2011).CrossRefGoogle Scholar
  10. 10.
    M.P. Dewald and W.A. Curtin, Philos. Mag. 87, 4615 (2007).CrossRefGoogle Scholar
  11. 11.
    W. Yu and Z. Wang, Comput. Mater. Sci. 87, 150 (2014).CrossRefGoogle Scholar
  12. 12.
    Y. Chen, J. Chem. Phys. 130, 134706 (2009).CrossRefGoogle Scholar
  13. 13.
    L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen, J. Mech. Phys. Solids 59, 160 (2011).CrossRefGoogle Scholar
  14. 14.
    S. Xu, R. Che, L. Xiong, Y. Chen, and D.L. McDowell, Int. J. Plast 72, 91 (2015).CrossRefGoogle Scholar
  15. 15.
    L. Xiong, S. Xu, D.L. McDowell, and Y. Chen, Int. J. Plast 65, 33 (2015).CrossRefGoogle Scholar
  16. 16.
    L. Xiong, J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, and Y. Chen, Acta Mater. 104, 143 (2016).CrossRefGoogle Scholar
  17. 17.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Acta Mater. 122, 412 (2017).CrossRefGoogle Scholar
  18. 18.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, Scr. Mater. 123, 135 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Xu, L. Xiong, Y. Chen, and D.L. McDowell, J. Mech. Phys. Solids 96, 460 (2016).CrossRefGoogle Scholar
  20. 20.
    M.D. Sangid, T. Ezaz, H. Sehitoglu, and I.M. Robertson, Acta Mater. 59, 283 (2011).CrossRefGoogle Scholar
  21. 21.
    M. Chassagne, M. Legros, and D. Rodney, Acta Mater. 59, 1456 (2011).CrossRefGoogle Scholar
  22. 22.
    Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter, Scr. Mater. 54, 1163 (2006).CrossRefGoogle Scholar
  23. 23.
    Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn, Acta Mater. 56, 1126 (2008).CrossRefGoogle Scholar
  24. 24.
    W. Yu and Z. Wang, Philos. Mag. 94, 2224 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos, Phys. Rev. B 59, 3393 (1999).CrossRefGoogle Scholar
  26. 26.
    J.E. Angelo, N.R. Moody, and M.I. Baskes, Model. Simul. Mater. Sci. Eng. 3, 289 (1995).CrossRefGoogle Scholar
  27. 27.
    S.M. Foiles and J.J. Hoyt, Acta Mater. 54, 3351 (2006).CrossRefGoogle Scholar
  28. 28.
    A.F. Voter and S.P. Chen, Mater. Res. Soc. Symp. Proc. 82, 175 (1987).CrossRefGoogle Scholar
  29. 29.
    X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Phys. Rev. B 69, 144113 (2004).CrossRefGoogle Scholar
  30. 30.
    J.B. Liu, D.D. Johnson, and A.V. Smirnov, Acta Mater. 53, 3601 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Xu, L. Xiong, Q. Deng, and D.L. McDowell, Int. J. Solids Struct. 90, 144 (2016).CrossRefGoogle Scholar
  32. 32.
    S. Xu (Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, USA, 2016)Google Scholar
  33. 33.
    W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object Oriented Approach to 3D Graphics (Clifton Park: Kitware, 2003).Google Scholar
  34. 34.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
  35. 35.
    A. Stukowski, Model. Simul. Mater. Sci. Eng. 20, 045021 (2012).CrossRefGoogle Scholar
  36. 36.
    A. Stukowski, V.V. Bulatov, and A. Arsenlis, Model. Simul. Mater. Sci. Eng. 20, 085007 (2012).CrossRefGoogle Scholar
  37. 37.
    J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, and N. Wilkins-Diehr, Comput. Sci. Eng. 16, 62 (2014).CrossRefGoogle Scholar
  38. 38.
    J.R. Rice, J. Mech. Phys. Solids 40, 239 (1992).CrossRefGoogle Scholar
  39. 39.
    S. Kibey, J.B. Liu, D.D. Johnson, and H. Sehitoglu, Acta Mater. 55, 6843 (2007).CrossRefGoogle Scholar
  40. 40.
    M.P. Dewald and W.A. Curtin, Model. Simul. Mater. Sci. Eng. 15, S193 (2007).CrossRefGoogle Scholar
  41. 41.
    B.J. Pestman, JThM de Hosson, V. Vitek, and F.W. Schapink, Scr. Metall. 23, 1431 (1989).CrossRefGoogle Scholar
  42. 42.
    L. Priester, S. Poulat, B. Décamps, and J. Thibault, Mat. Res. Soc. Symp. Proc. 652, 1 (2001).Google Scholar
  43. 43.
    L.C. Lim and R. Raj, Acta Metall. 33, 1577 (1985).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2017

Authors and Affiliations

  • Shuozhi Xu
    • 1
  • Liming Xiong
    • 2
  • Youping Chen
    • 3
  • David L. McDowell
    • 1
    • 4
    Email author
  1. 1.Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Aerospace EngineeringIowa State UniversityAmesUSA
  3. 3.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  4. 4.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations