Advertisement

Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification

  • 3115 Accesses

  • 64 Citations

Abstract

As the metal additive manufacturing (AM) industry moves towards industrial production, the need for qualification standards covering all aspects of the technology becomes ever more prevalent. While some standards and specifications for documenting the various aspects of AM processes and materials exist and continue to evolve, many such standards still need to be matured or are under consideration/development within standards development organizations. An important subset of this evolving the standardization domain has to do with critical property measurements for AM materials. While such measurement procedures are well documented, with various legacy standards for conventional metallic material forms such as cast or wrought structural alloys, many fewer standards are currently available to enable systematic evaluation of those properties in AM-processed metallic materials. This is due in part to the current lack of AM-specific standards and specifications for AM materials and processes, which are a logical precursor to the material characterization standards for any material system. This paper summarizes some of the important standardization activities, as well as limitations associated with using currently available standards for metal AM with a focus on measuring mission-critical properties. Technical considerations in support of future standards development, as well as a pathway for qualification/certification of AM parts enabled by the appropriate standardization landscape, are discussed.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

(adapted from Ref. 17 with permission)

Fig. 2

(adapted from Ref. 20 with permission)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    As defined by NASA, AM risk is a function of the following criteria: (1) all volumes and surfaces can be reliably inspected or proof tested, (2) the as-built surface can be fully removed on all fatigue-critical surfaces, (3) surfaces interfacing with sacrificial supports are fully accessible or can be fully improved, (4) structural walls or protrusions are ≤1 mm in cross-section, and (5) critical regions of the part require sacrificial supports.

References

  1. 1.

    GE Additive (www.geadditive.com), (2016). Accessed 20 Dec 2016.

  2. 2.

    M. Seifi, A. Salem, J. Beuth, O. Harrysson, and J.J. Lewandowski, JOM 68, 747 (2016).

  3. 3.

    M. Gorelik, Int. J. Fatigue 94, 168 (2017).

  4. 4.

    M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, and J.J. Lewandowski, JOM 67, 597 (2015).

  5. 5.

    J.J. Lewandowski and M. Seifi, Annu. Rev. Mater. Res. 46, 151 (2016).

  6. 6.

    N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson, Addit. Manuf. 8, 12 (2015).

  7. 7.

    B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).

  8. 8.

    H. Gong, K. Rafi, H. Gu, G.D. Janaki Ram, T. Starr, and B. Stucker, Mater. Des. 86, 545 (2015).

  9. 9.

    P. Li, D.H. Warner, A. Fatemi, and N. Phan, Int. J. Fatigue 85, 130 (2015).

  10. 10.

    N. Hrabe, T. Gnaupel-Herold, and T. Quinn, Int. J. Fatigue 94, 202 (2016).

  11. 11.

    G. Nicoletto, Int. J. Fatigue 94, 255 (2016).

  12. 12.

    D. Greitemeier, F. Palm, F. Syassen, and T. Melz, Int. J. Fatigue 94, 211 (2016).

  13. 13.

    S. Beretta and S. Romano, Int. J. Fatigue 94, 178 (2016).

  14. 14.

    M. Gorelik, Y. Lenets, and M.N. Menon, in ASME Turbo Expo (ASME, New York, NY, 2005), GT2005-68770.

  15. 15.

    R. Corran, M. Gorelik, D. Lehmann, and S. Mosset, in ASME Turbo Expo (ASME, Barcelona, 2006), GT2006-90843.

  16. 16.

    U.S. Department of Transportation-Federal Aviation Administration Notice N 8900.391, Additive Manufacturing in Maintenance, Preventive Maintenance, and Alteration of Aircraft, Aircraft Engines, Propellers, and Appliances (Washington D.C., 2016).

  17. 17.

    D. Wells, Engineering and Quality Standard for Additively Manufactured Spaceflight Hardware (Marshall Space Flight Center, Huntsville, 2016).

  18. 18.

    Food and Drug Administration, Technical Considerations for Additive Manufactured Devices—Draft Guidance for Industry and Food and Drug Administration Staff (Silver Spring, 2016).

  19. 19.

    M. Di Prima, J. Coburn, D. Hwang, J. Kelly, A. Khairuzzaman, and L. Ricles, 3D Print. Med. 2, 1 (2015).

  20. 20.

    Technology Exchange on Coordination of U.S. Standards Development for Additive Manufacturing (State College, PA, 2015).

  21. 21.

    B.A. Cowles, Summary Report: Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2016).

  22. 22.

    B.A. Cowles, Summary Report: The Second Joint Federal Aviation Administration—Air Force Workshop on Qualification/Certification of Additively Manufactured Parts (Dayton, 2017).

  23. 23.

    N. Hrabe, N. Barbosa, S.R. Daniewicz, and N. Shamsaei, Findings from the NIST/ASTM Workshop on Mechanical Behavior of Additive Manufacturing Components, in NIST Advanced Manufacturing Series, 2016.

  24. 24.

    T.M. Pollock, Nat. Mater. 15, 809 (2016).

  25. 25.

    ASTM Standard F3122, in ASTM Book of Standards (ASTM International, West Conshohocken, 2014).

  26. 26.

    A.D. Peralta, M. Enright, M. Megahed, J. Gong, M. Roybal, and J. Craig, Integr. Mater. Manuf. Innov. 5, 1 (2016).

  27. 27.

    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

  28. 28.

    B. Dutta and F.H.S. Froes, Adv. Mater. Res. 1019, 19 (2014).

  29. 29.

    S. Draper, B. Lerch, J. Telesman, R. Martin, I. Locci, A. Garg, and A. Ring, NASA/TM2016-219136-Materials Characterization of Electron Beam Melted Ti-6Al-4V (NASA Glenn Research Center, Cleveland, OH, United States, 2016).

  30. 30.

    A.M. Beese and B.E. Carroll, JOM 68, 724 (2016).

  31. 31.

    C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, and S.L. Sing, Appl. Phys. Rev. 2, 1 (2015).

  32. 32.

    A. Yadollahi and N. Shamsaei, Int. J. Fatigue 98, 14 (2017).

  33. 33.

    M. Filippini, S. Beretta, L. Patriarca, G. Pasquero, and S. Sabbadini, J. ASTM Int. 9, 104293 (2012).

  34. 34.

    E. Fodran and K. Walker, Benet Internal Technical Report: Surface Finish Enhancement for the Electron Beam Direct Digital Manufacturing of Ti-6Al-4V Alloy Structural Components (Watervliet, NY, 2015).

  35. 35.

    S.R. Daniewicz and N. Shamsaei, Int. J. Fatigue 94, 167 (2017).

  36. 36.

    Y. Xue, A. Pascu, M.F. Horstemeyer, L. Wang, and P.T. Wang, Acta Mater. 58, 4029 (2010).

  37. 37.

    B. Torries, A.J. Sterling, N. Shamsaei, S.M. Thompson, and S.R. Daniewicz, Rapid Prototyp. J. 22, 817 (2016).

  38. 38.

    M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski, Int. J. Fatigue 94, 263 (2017).

  39. 39.

    H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Addit. Manuf. 10, 47 (2016).

  40. 40.

    P. Edwards, A. O’Conner, and M. Ramulu, J. Manuf. Sci. Eng. 135, 61016 (2013).

  41. 41.

    D. Greitemeier, C. Dalle Donne, A. Schoberth, M. Jürgens, J. Eufinger, and T. Melz, Appl. Mech. Mater. 807, 169 (2015).

  42. 42.

    H. Gong, K. Rafi, T. Starr, and B. Stucker, in Solid Freeform Fabrication Proceedings (Austin, TX, 2012), pp. 499–506.

  43. 43.

    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).

  44. 44.

    A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, Eng. Fract. Mech. 120, 15 (2014).

  45. 45.

    A.W. Prabhu, A. Chaudhary, W. Zhang, and S.S. Babu, Sci. Technol. Weld. Join. 20, 659 (2015).

  46. 46.

    X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Mater. Sci. Eng. A 680, 239 (2017).

  47. 47.

    P.A. Kobryn and S.L. Semiatin, in Solid Freeform Fabrication Proceedings (Austin, TX, 2001), pp. 179–186.

  48. 48.

    A. Yadollahi, N. Shamsaei, M.S. Thompson, A. Elwany, and L. Bian, Int. J. Fatigue 94, 218 (2016).

  49. 49.

    P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).

  50. 50.

    P. Edwards and M. Ramulu, Fatigue Fract. Eng. Mater. Struct. 38, 1228 (2015).

  51. 51.

    N. Hrabe and T. Quinn, Mater. Sci. Eng. A 573, 271 (2013).

  52. 52.

    R. Shrestha, N. Simsiriwong, N. Shamsaei, N. Thompson, and L. Bian, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), pp. 606–616.

  53. 53.

    S. Siddique, M. Imran, M. Rauer, M. Kaloudis, E. Wycisk, C. Emmelmann, and F. Walther, Mater. Des. 83, 661 (2015).

  54. 54.

    H.P. Tang, M. Qian, N. Liu, X.Z. Zhang, G.Y. Yang, and J. Wang, JOM 67, 555 (2015).

  55. 55.

    M. Seifi, I. Ghamarian, P. Samimi, P.C. Collins, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1317–1322.

  56. 56.

    M. Seifi, A. Salem, D. Satko, U. Ackelid, S.L. Semiatin, and J.J. Lewandowski, Work in Progress (2017).

  57. 57.

    M. Todai, T. Nakano, T. Liu, H.Y. Yasuda, K. Hagihara, K. Cho, M. Ueda, and M. Takeyama, Addit. Manuf. 13, 61 (2017).

  58. 58.

    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Metall. Mater. Trans. A 47, 1939 (2016).

  59. 59.

    A. du Plessis, S.G. le Roux, J. Els, G. Booysen, and D.C. Blaine, Case Stud. Nondestruct. Test. Eval. 4, 1 (2015).

  60. 60.

    S. Tammas-Williams, P.J. Withers, I. Todd, and P.B. Prangnell, Scr. Mater. 122, 72 (2016).

  61. 61.

    A.B. Spierings, T.L. Starr, and I. Ag, Rapid Prototyp. J. 19, 88 (2013).

  62. 62.

    H.A. Stoffregen, K. Butterweck, and E. Abele, in Solid Freeform Fabrication Proceedings (Austin, TX, 2014), pp. 635–650.

  63. 63.

    E. Wycisk, A. Solbach, S. Siddique, D. Herzog, F. Walther, and C. Emmelmann, Phys. Procedia 56, 371 (2014).

  64. 64.

    D. Greitemeier, C. Dalle Donne, F. Syassen, J. Eufinger, and T. Melz, Mater. Sci. Technol. 32(7), 629 (2015).

  65. 65.

    M. Qian, W. Xu, M. Brandt, and H.P. Tang, MRS Bull. 41, 775 (2016).

  66. 66.

    A. Yadollahi, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 644, 171 (2015).

  67. 67.

    M. Mahmoudi, A. Elwany, A. Yadollahi, S. Thompson, L. Bian, and N. Shamsaei, Rapid Prototyp. J. Accepted (2017).

  68. 68.

    J.S. Keist and T.A. Palmer, Mater. Des. 106, 482 (2016).

  69. 69.

    B. Torries, S. Shao, N. Shamsaei, and S. Thompson, in Solid Freeform Fabrication Proceedings (Austin, TX, 2016), p. 1272.

  70. 70.

    J. Slotwinski and S. Moylan, Applicability of Existing Materials Testing Standards for Additive Manufacturing Materials, NIST IR 8005 (NIST, Gaithersburg, MD, 2014).

  71. 71.

    A. Sterling, B. Torries, N. Shamsaei, S.M. Thompson, and D.W. Seely, Mater. Sci. Eng. A 655, 100 (2016).

  72. 72.

    Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing. Workshop Summary Report (NIST, Gaithersburg, MD, 2013).

  73. 73.

    M.D. Monzón, Z. Ortega, A. Martínez, and F. Ortega, Int. J. Adv. Manuf. Technol. 76, 1111 (2014).

  74. 74.

    Y. Kok, X. Tan, S. Tor, and C.K. Chua, Virtual Phys. Prototyp. 10, 13 (2015).

  75. 75.

    S.L. Lu, H.P. Tang, Y.P. Ning, N. Liu, D.H. StJohn, and M. Qian, Metall. Mater. Trans. A 46, 3824 (2015).

  76. 76.

    ASTM/ISO JG61, Standard Guide for Orientation and Location Dependence Mechanical Properties for Metal Additive Manufacturing (ASTM International, West Conshohocken, PA, 2017). Work in Progress.

  77. 77.

    M. Seifi, D. Christiansen, J.L. Beuth, O. Harrysson, and J.J. Lewandowski, in Proceedings of 13th World Conference Titanium, ed. by V. Venkatesh, A. Pilchak, J. Allison, S. Ankem, R. Boyer, J. Christodoulou, H. Fraser, A. Imam, Y. Kosaka, H. Rack, A. Chatterjee, and A. Woodfield (TMS (The Minerals, Metals & Materials Society)/Wiley, San Diego, 2016), pp. 1373–1377.

  78. 78.

    M. Seifi, H. Villarraga-Gómez, F. Kim, E.J. Garboczi, S. Moylan, and J.J. Lewandowski, Work in Progress (2017).

  79. 79.

    J.A. Slotwinski and E.J. Garboczi, JOM 67, 538 (2015).

  80. 80.

    ASTM WK47031, Standard Guide for Post-Process Nondestructive Testing of Metal Additively Manufactured Parts Used in Aerospace Applications (West Conshohocken, PA, 2017). Work in Progress.

  81. 81.

    ASTM WK56649, Standard Practice/Guide for Intentionally Seeding Flaws in Additively Manufactured (AM) Parts (West Conshohocken, PA, 2017). Work in Progress.

  82. 82.

    R.B. Bergmann, F.T. Bessler, and W. Bauer, in Proceedings of ECNDT 2006 Conference (2006), pp. 1–10.

  83. 83.

    E. Maire and P.J. Withers, Int. Mater. Rev. 59, 1 (2013).

  84. 84.

    A. Thompson, I. Maskery, and R.K. Leach, Meas. Sci. Technol. 27, 1 (2016).

  85. 85.

    H. Villarraga-gómez, M. Seifi, Y. Uchiyama, A. Ramsey, and J.J. Lewandowski, in ASPE/euspen Summer Topical Meeting Dimensional Accuracy Surface Finish Additive Manufacturing (Raliegh, 2016), pp. 151–155.

  86. 86.

    K. Heim, F. Bernier, R. Pelletier, and L.P. Lefebvre, Case Stud. Nondestruct. Test. Eval. 6, 45 (2016).

  87. 87.

    J.A. Slotwinski, E.J. Garboczi, and K.M. Hebenstreit, J. Res. Natl. Inst. Stand. Technol. 119, 494 (2014).

  88. 88.

    L. Koester, H. Taheri, L.J. Bond, D. Barnard, and J. Gray, in 42nd Annual Review of Progress in Quantitative Nondestructive Evaluation, vol. 1706 (2016), p. 130001.

  89. 89.

    Concept Laser’s QMmeltpool 3D: In-situ quality assurance with real-time monitoring down to the micron level, vol. 1, no. 2 (Innovar Communications Ltd, 2015), pp. 69–71.

  90. 90.

    E. Schwalbach, M. Groeber, R. Dehoff, V. Paquit, N. Schehl, W. Porter, W. Buchanan, and R. John, Multimodal Correlated Datasets to Understand Location Specific Processing State in Metals Additive Manufacturing (TMS (The Minerals, Metals & Materials Society)/Nashvile, TN, 2016).

  91. 91.

    O. Brunke, E. Neuser, and A. Suppes, Int. Symp. Digit. Ind. Radiol. Comput. Tomogr. 20, 1 (2011).

  92. 92.

    R. Cunningham, S.P. Narra, T. Ozturk, J. Beuth, and A.D. Rollett, JOM 68, 765 (2016).

  93. 93.

    E. Neuser and A. Suppes, in International Symposium on Digital Industrial Radiology and Computed Tomography (Lyon, 2007).

  94. 94.

    America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC), Public Draft (2017).

  95. 95.

    NASA-STD-5009, Nondestructive Evaluation Requirements For Fracture Critical Metallic Components, NASA Technical standards system (NASA Technical Standard, Washington, DC 20546, 2008).

  96. 96.

    J.M. Waller, B.H. Parker, K.L. Hodges, E.R. Burke, J.L. Walker, and E.R. Generazio, NASA Technical Memorandum- NASA/TM2014218560-Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report Prepared for (Hampton, 2014).

  97. 97.

    M. Schwalbe, ed., Predictive Theoretical and Computational Approaches for Additive Manufacturing: Proceedings of a Workshop (Washington, DC, 2016). doi:10.17226/23646.

  98. 98.

    H.C. Ward and J.A. Warren, Materials Genome Initiative: Materials Data, NISTIR 8038 (Gaithersburg, MD, 2015).

  99. 99.

    D.L. McDowell and R.A. LeSar, MRS Bull. 41, 587 (2016).

  100. 100.

    L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67(3), 629 (2015).

  101. 101.

    ISO/ASTM 52900, in ASTM Book of Standard (ASTM International, West Conshohocken, 2015), pp. 1–9.

Download references

Acknowledgements

The authors wish to thank Ben Dutton of the Manufacturing Technology Centre, members of ISO Technical Committee 261 JG59, and Steve James of Aerojet Rocketdyne for their work on developing an AM defects catalog (Table I). The authors also wish to thank James McCabe of ANSI for his efforts to solicit inputs from AM, design, materials, NDT, and quality assurance experts to identify existing standards and standards in development, to assess current technology gaps related to standards, and to make recommendations for priority areas where there is a perceived need for additional standardization as described in Ref. 94.

Author information

Correspondence to Mohsen Seifi.

Additional information

This paper includes official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1 (AVI 108395 kb)

Supplementary Figure 2 (AVI 227549 kb)

Supplementary Figure 1 (AVI 108395 kb)

Supplementary Figure 2 (AVI 227549 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seifi, M., Gorelik, M., Waller, J. et al. Progress Towards Metal Additive Manufacturing Standardization to Support Qualification and Certification. JOM 69, 439–455 (2017) doi:10.1007/s11837-017-2265-2

Download citation

Keywords

  • Fatigue
  • Additive Manufacturing
  • Integrate Computational Material Engineer
  • Fatigue Crack Growth Test
  • American Welding Society