, Volume 69, Issue 3, pp 472–478 | Cite as

Effect of Hypoeutectic Boron Additions on the Grain Size and Mechanical Properties of Ti-6Al-4V Manufactured with Powder Bed Electron Beam Additive Manufacturing

  • Zaynab Mahbooba
  • Harvey West
  • Ola Harrysson
  • Andrzej Wojcieszynski
  • Ryan Dehoff
  • Peeyush Nandwana
  • Timothy HornEmail author


In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.


Boron Ultimate Tensile Strength Additive Manufacturing Boron Concentration Electron Beam Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors declare that they have no conflict of interest. This work was funded by the Center for Additive Manufacturing and Logistics. The authors wish to thank ATI Specialty Materials for providing the materials used in this study.


  1. 1.
    D. Cormier, H. West, O. Harrysson, and K. Knowlson, Sol. Freeform Fabric. Symp. 2, 440 (2004).Google Scholar
  2. 2.
    L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, and R.B. Wicker, Mater. Charact. 60, 96 (2009).CrossRefGoogle Scholar
  3. 3.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, and R.B. Wicker, J. Mech. Behav. Biomed. 2, 20 (2009).CrossRefGoogle Scholar
  4. 4.
    H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).CrossRefGoogle Scholar
  5. 5.
    A.A. Antonysamy, J. Meyer, and P.B. Prangnell, Mater. Charact. 84, 153 (2013).CrossRefGoogle Scholar
  6. 6.
    L. Ladani, J. Razmi, and S.F. Choudhury, J. Eng. Mater-T. ASME 136, 031006 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Seifi, M. Dahar, R. Aman, O. Harrysson, J. Beuth, and J. Lewandowski, J. Mater. 67, 597 (2015).Google Scholar
  8. 8.
    A. Safdar, L.Y. Wei, A. Snis, and Z. Lai, Mater. Charact. 65, 8 (2012).CrossRefGoogle Scholar
  9. 9.
    N. Hrabe and T. Quinn, Mater. Sci. Eng. 573, 264 (2013).CrossRefGoogle Scholar
  10. 10.
    N. Hrabe and T. Quinn, Mater. Sci. Eng. 573, 271 (2013).CrossRefGoogle Scholar
  11. 11.
    H. Galarraga, D.A. Lados, R.R. Dehoff, M.M. Kirka, and P. Nandwana, Addit. Manuf. 10, 47 (2016).CrossRefGoogle Scholar
  12. 12.
    W.J. Sames, K.A. Unocic, R.R. Dehoff, T. Lolla, and S.S. Babu, J. Mater. Res. 29, 1920 (2014).CrossRefGoogle Scholar
  13. 13.
    H.E. Helmer, C. Körner, and R.F. Singer, J. Mater. Res. 29, 1987 (2014).CrossRefGoogle Scholar
  14. 14.
    P.A. Kobryn and S.L. Semiatin, J. Mater. Process. Technol. 135, 330 (2003).CrossRefGoogle Scholar
  15. 15.
    N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, and S.S. Babu, Acta Mater. 112, 303 (2016).CrossRefGoogle Scholar
  16. 16.
    S. Roy, S. Suwas, S. Tamirisakandala, D.B. Miracle, and R. Srinivasan, Acta Mater. 59, 5494 (2011).CrossRefGoogle Scholar
  17. 17.
    J. Zhu, A. Kamiya, T. Yamada, W. Shi, and K. Naganuma, Mater. Sci. Eng. 339, 53 (2003).CrossRefGoogle Scholar
  18. 18.
    S. Tamirisakandala, R.B. Bhat, D.J. McEldowney, and D.B. Miracle, TMS 28, 185 (2003).Google Scholar
  19. 19.
    S. Tamirisakandala, R.B. Bhat, J.S. Tiley, and D.B. Miracle, Scr. Mater. 53, 1421 (2005).CrossRefGoogle Scholar
  20. 20.
    I. Sen, S. Tamirisakandala, D.B. Miracle, and U. Ramamurty, Acta Mater. 55, 4983 (2007).CrossRefGoogle Scholar
  21. 21.
    J.H. Luan, Z.B. Jiao, L. Heatherly, E.P. George, G. Chen, and C.T. Liu, Scr. Mater. 100, 90 (2015).CrossRefGoogle Scholar
  22. 22.
    O. Ivasishin, R. Teliovych, and V. Ivan, Metall. Mater. Trans. 39, 402 (2008).CrossRefGoogle Scholar
  23. 23.
    I. Sen, K. Gopinath, R. Datta, and U. Ramamurty, Acta Mater. 58, 6799 (2010).CrossRefGoogle Scholar
  24. 24.
    I. Sen and U. Ramamurty, Scr. Mater. 62, 37 (2010).CrossRefGoogle Scholar
  25. 25.
    W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
  26. 26.
    O. Cansizoglu, O.L.A. Harrysson, D. Cormier, and H. West, Mater. Sci. Eng. 492, 468 (2008).CrossRefGoogle Scholar
  27. 27.
    T.J. Horn and O.L.A. Harrysson, Sci. Prog. 95, 255 (2012).CrossRefGoogle Scholar
  28. 28.
    S. Al-Bermani, M.L. Blackmore, W. Zhang, and I. Todd, Metall. Mater. Trans. 41, 3422 (2010).CrossRefGoogle Scholar
  29. 29.
    J.H. Luan, Z.B. Jiao, G. Chen, and C.T. Liu, J. Alloy. Compd. 602, 235 (2014).CrossRefGoogle Scholar
  30. 30.
    D.J. McEldowney, S. Tamirisakandala, and D.B. Miracle, Metall. Mater. Trans. 41, 1003 (2010).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Zaynab Mahbooba
    • 1
  • Harvey West
    • 1
  • Ola Harrysson
    • 1
  • Andrzej Wojcieszynski
    • 2
  • Ryan Dehoff
    • 3
  • Peeyush Nandwana
    • 3
  • Timothy Horn
    • 1
    Email author
  1. 1.Center for Additive Manufacturing and LogisticsNorth Carolina State UniversityRaleighUSA
  2. 2.ATI Powder MetalsRobinsonUSA
  3. 3.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations