Advertisement

JOM

, Volume 69, Issue 1, pp 30–38 | Cite as

Relating Interface Evolution to Interface Mechanics Based on Interface Properties

  • Devendra Verma
  • Sudipta Biswas
  • Chandra Prakash
  • Vikas Tomar
Article

Abstract

The current article focuses on recent work done in understanding the role of processing techniques on interface evolution and connecting interface evolution to interface thickness-dependent properties. Special emphasis is placed on interface evolution during the sintering process of tungsten (W). Sintering with additives such as nickel significantly changes grain boundary properties in W, leading to issues such as grain boundary embrittlement. When one has to mechanically describe properties of polycrystalline W with an account of the influence of grain boundary embrittlement, one must explicitly consider grain boundary properties. This issue is the focus of the present work on the mechanical properties of interfaces. Overall, a phase field modeling-based approach is shown to be an excellent computational tool for predicting the interface evolution. The influences of the interface thickness, chemistry, and orientation of phases around interfaces are analyzed using extended finite element simulations for polycrystalline W.

Keywords

Energy Ratio Total Free Energy Interface Thickness Interface Width Brittleness Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the funding received from DoE-NETL supporting this research work (Grant DE-FE0011796). The authors would also like to thank their colleagues Yang Zhang, Debapriya Mohanty, Hao Wang, and Bing Li for helpful discussions.

References

  1. 1.
    S. Pal and M. Meraj, Mater. Des. 108, 168 (2016).Google Scholar
  2. 2.
    H. Yu, X. Zhou, W. Zhang, H. Peng, and C. Zhang, Mater. Des. 44, 320 (2013).CrossRefGoogle Scholar
  3. 3.
    D. Verma, J. Singh, A.H. Varma, and V. Tomar, JOM 67, 1694 (2015).CrossRefGoogle Scholar
  4. 4.
    D. Verma, T. Qu, and V. Tomar, JOM 67, 858 (2015).CrossRefGoogle Scholar
  5. 5.
    T. Qu, D. Verma, M. Shahidi, B. Pichler, C. Hellmich, and V. Tomar, MRS Bull. 40, 349 (2015).CrossRefGoogle Scholar
  6. 6.
    D. Verma and V. Tomar, Mater. Sci. Eng., C 44, 371 (2014).CrossRefGoogle Scholar
  7. 7.
    I.J. Beyerlein, M.J. Demkowicz, A. Misra, and B.P. Uberuaga, Prog. Mater Sci. 74, 125 (2015).CrossRefGoogle Scholar
  8. 8.
    T. Qu, D. Verma, M. Alucozai, and V. Tomar, Acta Biomater. 25, 325 (2015).CrossRefGoogle Scholar
  9. 9.
    H. Lee and V. Tomar, Comput. Mater. Sci. 77, 131 (2013).CrossRefGoogle Scholar
  10. 10.
    H. Lee and V. Tomar, Int. J. Plast 53, 135 (2014).CrossRefGoogle Scholar
  11. 11.
    N.A. Mara, N. Li, A. Misra, and J. Wang, JOM 68, 143 (2016).CrossRefGoogle Scholar
  12. 12.
    X. He and Y. Shen, JOM 67, 1486 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Wang, K. Kang, R.F. Zhang, S.J. Zheng, I.J. Beyerlein, and N.A. Mara, JOM 64, 1208 (2012).CrossRefGoogle Scholar
  14. 14.
    N.A. Mara, I.J. Beyerlein, J.S. Carpenter, and J. Wang, JOM 64, 1218 (2012).CrossRefGoogle Scholar
  15. 15.
    X. Zhang, E.G. Fu, A. Misra, and M.J. Demkowicz, JOM 62, 75 (2010).CrossRefGoogle Scholar
  16. 16.
    L. Weng, Y. Shen, T. Fan, and J. Xu, JOM 67, 1499 (2015).CrossRefGoogle Scholar
  17. 17.
    R. Srinivasan, R. Banerjee, G.B. Viswanathan, S. Nag, J.Y. Hwang, J. Tiley, and H.L. Fraser, JOM 62, 64 (2010).CrossRefGoogle Scholar
  18. 18.
    J. Wang, C. Zhou, I.J. Beyerlein, and S. Shao, JOM 66, 102 (2014).CrossRefGoogle Scholar
  19. 19.
    I.J. Beyerlein, N.A. Mara, J. Wang, J.S. Carpenter, S.J. Zheng, W.Z. Han, R.F. Zhang, K. Kang, T. Nizolek, and T.M. Pollock, JOM 64, 1192 (2012).CrossRefGoogle Scholar
  20. 20.
    V.I. Dybkov, JOM 61, 76 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Gupta, S. Lee, R.B. Wagstaff, W. Mark Gallerneault, and J.W. Fenton, JOM 59, 62 (2007).CrossRefGoogle Scholar
  22. 22.
    K.C. Jajam and H.V. Tippur, Eng. Fract. Mech. 78, 1289 (2011).CrossRefGoogle Scholar
  23. 23.
    K.C. Jajam and H.V. Tippur, Int. J. Solids Struct. 49, 1127 (2012).CrossRefGoogle Scholar
  24. 24.
    V.B. Chalivendra and A.J. Rosakis, Eng. Fract. Mech. 75, 2385 (2008).CrossRefGoogle Scholar
  25. 25.
    Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor, Nat. Mater. 7, 115 (2008).CrossRefGoogle Scholar
  26. 26.
    M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix, Science 305, 986 (2004).CrossRefGoogle Scholar
  27. 27.
    A. Kunz, S. Pathak, and J.R. Greer, Acta Mater. 59, 4416 (2011).CrossRefGoogle Scholar
  28. 28.
    S.R. Kalidindi and S. Pathak, Acta Mater. 56, 3523 (2008).CrossRefGoogle Scholar
  29. 29.
    S. Pathak, D. Stojakovic, R. Doherty, and S.R. Kalidindi, J. Mater. Res. 24, 1142 (2011).CrossRefGoogle Scholar
  30. 30.
    R. Hahnlen and M.J. Dapino, Compos. B 59, 101 (2014).CrossRefGoogle Scholar
  31. 31.
    B. Radhakrishnan, G.B. Sarma, and T. Zacharia, Acta Mater. 46, 4415 (1998).CrossRefGoogle Scholar
  32. 32.
    S.Y. Hu and C.H. Henager Jr, Acta Mater. 58, 3230 (2010).CrossRefGoogle Scholar
  33. 33.
    U. Grafe, B. Bottger, J. Tiaden, and S.G. Fries, Model. Simul. Mater. Sci. Eng. 8, 871 (2000).CrossRefGoogle Scholar
  34. 34.
    I. Loginova, G. Amberg, and J. Agren, Acta Mater. 49, 573 (2001).CrossRefGoogle Scholar
  35. 35.
    T. Uehara and T. Tsujino, J. Cryst. Growth 275, e219 (2005).CrossRefGoogle Scholar
  36. 36.
    Y.M. Jin, A. Artemev, and A.G. Khachaturyan, Acta Mater. 49, 2309 (2001).CrossRefGoogle Scholar
  37. 37.
    A. Yamanaka, T. Takaki, and Y. Tomita, Mater. Sci. Eng., A 491, 378 (2008).CrossRefGoogle Scholar
  38. 38.
    S.Y. Hu and L.Q. Chen, Acta Mater. 49, 463 (2001).CrossRefGoogle Scholar
  39. 39.
    D. Rodney, Y. Le Bouar, and A. Finel, Acta Mater. 51, 17 (2003).CrossRefGoogle Scholar
  40. 40.
    S.Y. Hu, M.I. Baskes, and M. Stan, Appl. Phys. Lett. 90, 081921 (2007).CrossRefGoogle Scholar
  41. 41.
    Y. Wang and J. Li, Acta Mater. 58, 1212 (2010).CrossRefGoogle Scholar
  42. 42.
    A. Kazaryan, Y. Wang, S.A. Dregia, and B.R. Patton, Phys. Rev. B 61, 14275 (2000).CrossRefGoogle Scholar
  43. 43.
    T. Uehara, T. Tsujino, and N. Ohno, J. Cryst. Growth 300, 530 (2007).CrossRefGoogle Scholar
  44. 44.
    I.S. Aranson, V.A. Kalatsky, and V.M. Vinokur, Phys. Rev. Lett. 85, 118 (2000).CrossRefGoogle Scholar
  45. 45.
    A. Karma, D.A. Kessler, and H. Levine, Phys. Rev. Lett. 87, 045501 (2001).CrossRefGoogle Scholar
  46. 46.
    N. Moelans, B. Blanpain, and P. Wollants, Calphad 32, 268 (2008).CrossRefGoogle Scholar
  47. 47.
    J.W. Cahn and J.E. Hilliard, J. Chem. Phys. 28, 258 (1958).CrossRefGoogle Scholar
  48. 48.
    R.S. Qin and H.K. Bhadeshia, Mater. Sci. Technol. 26, 803 (2010).CrossRefGoogle Scholar
  49. 49.
    Y.U. Wang, Acta Mater. 54, 953 (2006).CrossRefGoogle Scholar
  50. 50.
    J.S. Lee, C. Minkwitz, and Ch. Herzig, Phys. Status Solidi B 202, 931 (1997).CrossRefGoogle Scholar
  51. 51.
    J. Mundy, S. Rothman, N. Lam, H. Hoff, and L. Nowicki, Phys. Rev. B 18, 6566 (1978).CrossRefGoogle Scholar
  52. 52.
    N.L. Peterson, WAAD Technical report (1960).Google Scholar
  53. 53.
    R.E. Pawel and T. Lundy, Acta Metall. 17, 979 (1969).CrossRefGoogle Scholar
  54. 54.
    N. Arkhipova, S. Klotsman, Y.A. Rabovskij, and A. Timofeev, Fiz. Met. Metalloved. 43, 779 (1977).Google Scholar
  55. 55.
    G. Neumann and V. Tölle, Philos. Mag. A 61, 563 (1990).CrossRefGoogle Scholar
  56. 56.
    S. Biswas, D. Schwen, J. Singh, and V. Tomar, Extreme Mech. Lett. 7, 78 (2016).CrossRefGoogle Scholar
  57. 57.
    H. Lee and V. Tomar, ASME J. Eng. Mater. Technol. 134, 031010 (2012).CrossRefGoogle Scholar
  58. 58.
    V.K. Gupta, D.-H. Yoon, H.M. Meyer Iii, and J. Luo, Acta Mater. 55, 3131 (2007).CrossRefGoogle Scholar
  59. 59.
    C. Prakash, H. Lee, M. Alucozai, and V. Tomar, Int. J. Fract. 199, 1 (2016).CrossRefGoogle Scholar
  60. 60.
    Abaqus, Version 6.14 Documentation. (Dassault Systemes Simulia Corp, Providence, 2014).Google Scholar
  61. 61.
    B.R. Lawn and D.B. Marshall, J. Am. Ceram. Soc. 62, 347 (1979).CrossRefGoogle Scholar
  62. 62.
    A.G. Evans and T.R. Wilshaw, Acta Metall. 24, 939 (1976).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Devendra Verma
    • 1
  • Sudipta Biswas
    • 1
  • Chandra Prakash
    • 1
  • Vikas Tomar
    • 1
  1. 1.School of Aeronautics and AstronauticsPurdue UniversityWest LafayetteUSA

Personalised recommendations