, Volume 69, Issue 1, pp 45–50 | Cite as

Elastic Property Dependence on Mobile and Trapped Hydrogen in Ni-201

  • S. K. Lawrence
  • B. P. Somerday
  • R. A. Karnesky


Enhanced dislocation processes can accompany decohesion mechanisms during hydrogen degradation of ductile structural metals. However, hydrogen–deformation interactions and the role of defects in degradation processes remain poorly understood. In the current study, nanoindentation within specifically oriented grains in as-received, hydrogen-charged, aged, and hydrogen re-charged conditions revealed a “hysteresis” of indentation modulus, while the indentation hardness varied minimally. Thermal pre-charging with approximately 2000 appm hydrogen decreases the indentation modulus by ~20%, aging leads to a slight recovery, but re-charging drives the modulus back down to values similar to those measured in the hydrogen-charged condition. This “hysteresis” indicates that dissolved interstitial hydrogen is not solely responsible for mechanical property alterations; hydrogen trapped at defects also contributes to elastic property variation.



This work was supported by the DOE NNSA Stewardship Science Graduate Fellowship [Grant DE-NA0002135] (SKL) and the Laboratory Directed Research and Development program at Sandia National Laboratories [Grant SNL-LDRD-173116], a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Supplementary material

11837_2016_2157_MOESM1_ESM.docx (297 kb)
Supplementary material 1 (DOCX 296 kb)


  1. 1.
    S.P. Lynch, Corros. Sci. 22, 925 (1982).CrossRefGoogle Scholar
  2. 2.
    W. Gerberich, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Volume 2: Mechanisms, modeling and future developments, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 209–246.CrossRefGoogle Scholar
  3. 3.
    H.K. Birnbaum and P. Sofronis, Mater. Sci. Eng. A 176, 191 (1994).CrossRefGoogle Scholar
  4. 4.
    R. Oriani and P. Joshephic, Acta Metall. 22, 1065 (1974).CrossRefGoogle Scholar
  5. 5.
    Y. Jagodzinski, H. Hanninen, O. Tarasenko, and S. Smuk, Scr. Mater. 43, 245 (2000).CrossRefGoogle Scholar
  6. 6.
    J. Kameda and C. McMahon, Metall. Mater. Trans. A 11, 91 (1980).CrossRefGoogle Scholar
  7. 7.
    W.W. Gerberich and Y.T. Chen, Metall. Trans. A 6, 271 (1975).CrossRefGoogle Scholar
  8. 8.
    R.H. Jones, S.M. Bruemmer, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 1729 (1983).CrossRefGoogle Scholar
  9. 9.
    S.M. Bruemmer, R.H. Jones, M.T. Thomas, and D.R. Baer, Metall. Mater. Trans. A 14, 223 (1983).CrossRefGoogle Scholar
  10. 10.
    M. Nagumo, Mater. Sci. Technol. 20, 940 (2004).CrossRefGoogle Scholar
  11. 11.
    D. Delafosse, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Volume 2: Mechanisms, modeling and future developments, ed. R.P. Gangloff and B.P. Somerday (Philadelphia: Woodhead, 2012), pp. 247–285.CrossRefGoogle Scholar
  12. 12.
    S.K. Lawrence, B.P. Somerday, N.R. Moody, and D.F. Bahr, JOM J. Miner. Met. Mater. Soc. 66, 1383 (2014).CrossRefGoogle Scholar
  13. 13.
    A. Barnoush and H. Vehoff, Scr. Mater. 55, 195 (2006).CrossRefGoogle Scholar
  14. 14.
    A. Barnoush and H. Vehoff, Acta Mater. 58, 5274 (2010).CrossRefGoogle Scholar
  15. 15.
    N. Kheradmand, J. Dake, and A. Barnoush, Philos. Mag. 92, 3216 (2012).CrossRefGoogle Scholar
  16. 16.
    S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie, Acta Mater. 57, 4148 (2009).CrossRefGoogle Scholar
  17. 17.
    M.R. Louthan Jr., J.A. Donovan, and G.R. Caskey Jr., Acta Metall. 23, 745 (1975).CrossRefGoogle Scholar
  18. 18.
    A. Metsue, A. Oudriss, and X. Feaugas, J. Alloys Compd. 656, 555 (2016).CrossRefGoogle Scholar
  19. 19.
    Y. Wang, D. Connétable, and D. Tanguy, Phys. Rev. B 91, 1 (2015).Google Scholar
  20. 20.
    O. Todoshchenko, Y. Yagodzinskyy, and H. Hänninen, Defect Diffus Forum 344, 71 (2013).CrossRefGoogle Scholar
  21. 21.
    W. Betteridge, Nickel and Its Alloys (West Sussex: Ellis Horwood Ltd, 1984).Google Scholar
  22. 22.
    J.J. Vlassak and W.D. Nix, J. Mech. Phys. Solids 42, 1223 (1994).CrossRefGoogle Scholar
  23. 23.
    Y. Fukai and N. Okuma, Phys. Rev. Lett. 73, 1640 (1994).CrossRefGoogle Scholar
  24. 24.
    H. Osono, T. Kino, Y. Kurokawa, and Y. Fukai, J. Alloys Compd. 231, 41 (1995).CrossRefGoogle Scholar
  25. 25.
    K. Takai, H. Shoda, H. Suzuki, and M. Nagumo, Acta Mater. 56, 5158 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Hatano, M. Fujinami, K. Arai, H. Fujii, and M. Nagumo, Acta Mater. 67, 342 (2014).CrossRefGoogle Scholar
  27. 27.
    N. Carr and R. Mclellan, J. Phys. Chem. Solids 67, 1797 (2006).CrossRefGoogle Scholar
  28. 28.
    D. Tanguy, Y. Wang, and D. Connétable, Acta Mater. 78, 135 (2014).CrossRefGoogle Scholar
  29. 29.
    K. Nibur, D. Bahr, and B. Somerday, Acta Mater. 54, 2677 (2006).CrossRefGoogle Scholar
  30. 30.
    F.M. Mazzolai and H.K. Birnbaum, J. Phys. F Met. Phys. 15, 525 (1985).CrossRefGoogle Scholar
  31. 31.
    E. Lunarska, A. Zielnski, and M. Smialowski, Acta Metall. 25, 305 (1977).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2016

Authors and Affiliations

  • S. K. Lawrence
    • 1
    • 4
  • B. P. Somerday
    • 2
    • 3
  • R. A. Karnesky
    • 1
  1. 1.Sandia National LaboratoriesLivermoreUSA
  2. 2.Southwest Research InstituteSan AntonioUSA
  3. 3.International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)Kyushu UniversityFukuokaJapan
  4. 4.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations