Advertisement

JOM

, Volume 68, Issue 11, pp 2811–2816 | Cite as

Microstructure Variations and Creep Properties of Novel High Temperature V-Si-B Materials

  • Manja Krüger
  • Volodymyr Bolbut
  • Florian Gang
  • Georg Hasemann
Article

Abstract

Our current understanding of the properties of V-Si-B alloys produced by a powder and an ingot metallurgy route is reported. This novel group of materials with high melting points above 1900°C and a low density of 5.21–5.85 g/cm3 has been identified as a potential alloy system for applications at temperatures up to 1000°C. A powder metallurgical V-9Si-13B alloy with a three-phase microstructure is introduced and characterized in terms of creep behavior in the as-received and annealed state. Annealing at 1300°C leads to grain growth and improved creep resistance. For comparison, the same alloy composition is produced via arc-melting, yielding a coarser microstructure. Another powder metallurgically processed alloy having the nominal composition of the phase V5SiB2 is comparably assessed. Compression creep tests at temperatures between 900°C and 1050°C demonstrate that these novel alloys are competitive compared to Al-Ti materials and Ni-Co superalloys.

Keywords

Creep Resistance Creep Strength Solid Solution Alloy Silicide Phase Ingot Metallurgy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank B. Köppe-Grabow for assistance in the metallographic preparation. Consumables for mechanical testing were provided by the Methodisch-Diagnostisches Zentrum Werkstoffprüfung e.V. Magdeburg.

References

  1. 1.
    V.V. Shyrokov, C.B. Vasyliv, and O.V. Shyrokov, J. Nucl. Mater. 394, 114 (2009).CrossRefGoogle Scholar
  2. 2.
    H. Matsui, K. Fukumoto, D.L. Smith, H.M. Chung, W. Van Witzenburg, and S.N. Votinov, J. Nucl. Mater. 233–237, 92 (1996).CrossRefGoogle Scholar
  3. 3.
    D.L. Smith, H.M. Chung, B.A. Loomis, H. Matsui, S. Votinov, and W. Van Witzenburg, Fusion Eng. Des. 29, 399 (1995).CrossRefGoogle Scholar
  4. 4.
    D.L. Smith, M.C. Billone, and K. Natesan, Int. J. Refract. Met. Hard Mater. 18, 213 (2000).CrossRefGoogle Scholar
  5. 5.
    P.F. Zheng, T. Nagasaka, T. Muroga, and J.M. Chen, Fusion Eng. Des. 89, 1648 (2014).CrossRefGoogle Scholar
  6. 6.
    J.M. Chen, V.M. Chernov, R.J. Kurtz, and T. Muroga, J. Nucl. Mater. 417, 289 (2011).CrossRefGoogle Scholar
  7. 7.
    T. Muroga, J.M. Chen, V.M. Chernov, R.J. Kurtz, and M. Le Flem, J. Nucl. Mater. 455, 263 (2014).CrossRefGoogle Scholar
  8. 8.
    J. Williams and M. Akinc, Intermetallics 6, 269 (1998).CrossRefGoogle Scholar
  9. 9.
    K. Natesan and M. Uz, Fusion Eng. Des. 51–52, 145 (2000).CrossRefGoogle Scholar
  10. 10.
    D.L. Keller and J.G. Douglas, Oxid. Met. 36, 439 (1991).CrossRefGoogle Scholar
  11. 11.
    C.A. Nunes, B.B. de Lima, G.C. Coelho, and P.A. Suzuki, J. Phase Equilibria Diffus. 30, 345 (2009).CrossRefGoogle Scholar
  12. 12.
    M. Krüger, Scr. Mater. 121, 75 (2016).CrossRefGoogle Scholar
  13. 13.
    H.M. Chung, B.A. Loomis, and D.L. Smith, J. Nucl. Mater. 239, 139 (1996).CrossRefGoogle Scholar
  14. 14.
    S. Oda, H. Kurishita, Y. Tsuruoka, S. Kobayashi, K. Nakai, and H. Matsui, J. Nucl. Mater. 329–333, 462 (2004).CrossRefGoogle Scholar
  15. 15.
    H. Bei, E.P. George, E.A. Kenik, and G.M. Pharr, Z. Met. 95, 505 (2004).CrossRefGoogle Scholar
  16. 16.
    C.H. Zenk, S. Neumeier, N.M. Engl, S.G. Fries, O. Dolotko, M. Weiser, S. Virtanen, and M. Göken, Scr. Mater. 112, 83 (2016).CrossRefGoogle Scholar
  17. 17.
    J.J. Kruzic, J.H. Schneibel, and R.O. Ritchie, Scr. Mater. 50, 459 (2004).CrossRefGoogle Scholar
  18. 18.
    J.F. Smith, Phase Diagrams of Binary Vanadium Alloys (Metals Park: American Society for Metals, 1989).Google Scholar
  19. 19.
    K. Natesan, W.K. Soppet, and A. Purohit, J. Nucl. Mater. 311, 585 (2002).CrossRefGoogle Scholar
  20. 20.
    G. Hasemann, I. Bogomol, D. Schliephake, P.I. Loboda, and M. Krüger, Intermetallics 48, 28 (2014).CrossRefGoogle Scholar
  21. 21.
    P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin, Mater. Sci. Eng. A 463, 216 (2007).CrossRefGoogle Scholar
  22. 22.
    D. Sturm, M. Heilmaier, H. Saage, M. Paninski, G.J. Schmitz, A. Drevermann, M. Palm, F. Stein, N. Engberding, K. Kelm, and S. Irsen, Mater. Sci. Eng. A 511, 373 (2009).CrossRefGoogle Scholar
  23. 23.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H. Christ, B. Gorr, and S. Burk, JOM 61, 61 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Manja Krüger
    • 1
  • Volodymyr Bolbut
    • 1
  • Florian Gang
    • 2
  • Georg Hasemann
    • 1
  1. 1.Institute for Materials and Joining TechnologyOtto-von-Guericke University MagdeburgMagdeburgGermany
  2. 2.Institute for Applied MaterialsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations