JOM

, Volume 68, Issue 10, pp 2666–2672 | Cite as

High-Throughput Computational Screening of Electrical and Phonon Properties of Two-Dimensional Transition Metal Dichalcogenides

  • Izaak Williamson
  • Andres Correa Hernandez
  • Winnie Wong-Ng
  • Lan Li
Article

Abstract

Two-dimensional transition metal dichalcogenides (2D-TMDs) are of broadening research interest due to their novel physical, electrical, and thermoelectric properties. Having the chemical formula MX2, where M is a transition metal and X is a chalcogen, there are many possible combinations to consider for materials-by-design exploration. By identifying novel compositions and utilizing the lower dimensionality, which allows for improved thermoelectric performance (e.g., increased Seebeck coefficients without sacrificing electron concentration), MX2 materials are promising candidates for thermoelectric applications. However, to develop these materials into wide-scale use, it is crucial to comprehensively understand the compositional affects. This work investigates the structure, electronic, and phonon properties of 18 different MX2 materials compositions as a benchmark to explore the impact of various elements. There is significant correlation between properties of constituent transition metals (atomic mass and radius) and the structure/properties of the corresponding 2D-TMDs. As the mass of M increases, the n-type power factor and phonon frequency gap increases. Similarly, increases in the radius of M lead to increased layer thickness and Seebeck coefficient S. Our results identify key factors to optimize MX2 compositions for desired performance.

References

  1. 1.
    S. Ogawa, J. Appl. Phys. 50, 2308 (1979).CrossRefGoogle Scholar
  2. 2.
    T. Shishidou, A.J. Freeman, and R. Asahi, Phys. Rev. B 64, 180401 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Tributsch, Z. Naturforsch. A 32, 972 (1977).CrossRefGoogle Scholar
  4. 4.
    J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Science 331, 568 (2011).CrossRefGoogle Scholar
  5. 5.
    C. Ataca, H. Sahin, and S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).CrossRefGoogle Scholar
  6. 6.
    F.A. Rasmussen and K.S. Thygesen, J. Phys. Chem. C 119, 13169 (2015).CrossRefGoogle Scholar
  7. 7.
    S.Z. Butler, S.M. Hollen, L.Y. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J.X. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger, ACS Nano 7, 2898 (2013).CrossRefGoogle Scholar
  8. 8.
    S. McDonnell, R. Addou, C. Buie, R.M. Wallace, and C.L. Hinkle, ACS Nano 8, 2880 (2014).CrossRefGoogle Scholar
  9. 9.
    C. Gong, L. Colombo, R.M. Wallace, and K. Cho, Nano Lett. 14, 1714 (2014).CrossRefGoogle Scholar
  10. 10.
    R. Ganatra and Q. Zhang, ACS Nano 8, 4074 (2014).CrossRefGoogle Scholar
  11. 11.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  12. 12.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
  13. 13.
    B.W.H. Baugher, H.O.H. Churchill, Y.F. Yang, and P. Jarillo-Herrero, Nat. Nanotechnol. 9, 262 (2014).CrossRefGoogle Scholar
  14. 14.
    W. Chen, E.J.G. Santos, W.G. Zhu, E. Kaxiras, and Z.Y. Zhang, Nano Lett. 13, 509 (2013).CrossRefGoogle Scholar
  15. 15.
    T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, and I. Chorkendorff, Science 317, 100 (2007).CrossRefGoogle Scholar
  16. 16.
    W. Huang, H.X. Da, and G.C. Liang, J. Appl. Phys. 113, 104304 (2013).CrossRefGoogle Scholar
  17. 17.
    W. Huang, X. Luo, C.K. Gan, S.Y. Quek, and G.C. Liang, Phys. Chem. Chem. Phys. 16, 10866 (2014).CrossRefGoogle Scholar
  18. 18.
    C. Lee, J. Hong, M.H. Whangbo, and J.H. Shim, Chem. Mater. 25, 3745 (2013).CrossRefGoogle Scholar
  19. 19.
    X.K. Gu and R.G. Yang, Appl. Phys. Lett. 105, 131903 (2014).CrossRefGoogle Scholar
  20. 20.
    G.S. Nolas and G.A. Slack, Am. Sci. 89, 136 (2001).CrossRefGoogle Scholar
  21. 21.
    M.M. Zou, J.F. Li, and T. Kita, J. Solid State Chem. 198, 125 (2013).CrossRefGoogle Scholar
  22. 22.
    J.S. Dyck, W.D. Chen, C. Uher, L. Chen, X.F. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
  23. 23.
    J. Yang, W. Zhang, S.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).CrossRefGoogle Scholar
  24. 24.
    I. Williamson, L.J.Y. Her, X.L. Su, Y.G. Yan, W. Wong-Ng, and L. Li, J. Appl. Phys. 119, 055101 (2016).CrossRefGoogle Scholar
  25. 25.
    G.J. Tan, S.Y. Wang, H. Li, Y.G. Yan, and X.F. Tang, J. Solid State Chem. 187, 316 (2012).CrossRefGoogle Scholar
  26. 26.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  27. 27.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).CrossRefGoogle Scholar
  28. 28.
    G.D. Mahan and J.O. Sofo, P. Natl. Acad. Sci. USA 93, 7436 (1996).CrossRefGoogle Scholar
  29. 29.
    A.I. Hochbaum, R.K. Chen, R.D. Delgado, W.J. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.D. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  30. 30.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.K. Yu, W.A. Goddard, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  31. 31.
    T.E. Graedel, E.M. Harper, N.T. Nassar, P. Nuss, and B.K. Reck, Proc. Natl. Acad. Sci. USA 112, 4257 (2015).CrossRefGoogle Scholar
  32. 32.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  33. 33.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  34. 34.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  35. 35.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  36. 36.
    A.I. Liechtenstein, V.I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).CrossRefGoogle Scholar
  37. 37.
    K. Parlinski, Z.Q. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).CrossRefGoogle Scholar
  38. 38.
    A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).CrossRefGoogle Scholar
  39. 39.
    S. Grimme, J. Comp. Chem. 27, 1787 (2006).CrossRefGoogle Scholar
  40. 40.
    T. Boker, R. Severin, A. Muller, C. Janowitz, R. Manzke, D. Voss, P. Kruger, A. Mazur, and J. Pollmann, Phys. Rev. B 64, 235305 (2001).CrossRefGoogle Scholar
  41. 41.
    J. E. Sansonetti and W. C. Martin, “Handbook of Basic Atomic Spectroscopic Data” (NIST, 2009), http://www.nist.gov/pml/data/handbook/. Accessed 22 October 2015.
  42. 42.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  43. 43.
    G.K.H. Madsen and D.J. Singh, Comp. Phys. Comm. 175, 67 (2006).CrossRefGoogle Scholar
  44. 44.
    Y. Wang, X. Chen, T. Cui, Y.L. Niu, Y.C. Wang, M. Wang, Y.M. Ma, and G.T. Zou, Phys. Rev. B: Condens. Matter Mater. Phys. 76, 155127 (2007).CrossRefGoogle Scholar
  45. 45.
    C. Wang, Y.X. Wang, G.B. Zhang, and C.X. Peng, J. Phys. Chem. C 117, 21037 (2013).CrossRefGoogle Scholar
  46. 46.
    K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen, Phys. Rev. B 85, 115317 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Micron School of Materials Science and EngineeringBoise State UniversityBoiseUSA
  2. 2.Materials Measurement DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  3. 3.Center for Advanced Energy StudiesIdaho FallsUSA

Personalised recommendations