Advertisement

JOM

, Volume 68, Issue 10, pp 2680–2687 | Cite as

Mg2Si-Based Materials for the Thermoelectric Energy Conversion

  • X. Cheng
  • N. Farahi
  • H. Kleinke
Article

Abstract

Thermoelectric materials are capable of converting a temperature gradient into electricity (thermoelectric power generation) and vice versa (Peltier cooling). The thermoelectric power generation has been used for decades in spacecraft, where radioactive decay provides the heat source. Additional applications under consideration are based on the utilization of waste heat, for example in automotives or the manufacturing industries. Commercial thermoelectric materials are normally based on Bi2Te3, PbTe, or possibly in the future on the so-called filled skutterudites, such as YbxCo4Sb12. The downside of these materials is that some of their major constituent elements are toxic, namely tellurium, lead, and antimony, and in part rare and expensive (ytterbium, tellurium). Mg2Si on the other hand is composed of abundant, environmentally benign elements, and thus offers a huge advantage for commercial applications. Here, we provide a review of Mg2Si-based materials for thermoelectric energy conversion, discussing how competitive these materials have become in comparison to the above-mentioned more traditional materials.

Keywords

Thermoelectrics energy magnesium silicon tin bismuth 

Notes

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council is highly appreciated.

References

  1. 1.
    H.-S. Choi, S. Yun, and K. Whang, Appl. Therm. Eng. 27, 2841 (2007).CrossRefGoogle Scholar
  2. 2.
    R.R. Furlong and E.J. Wahlquist, Nucl. News 42, 26 (1999).Google Scholar
  3. 3.
    J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).CrossRefGoogle Scholar
  4. 4.
    L.E. Bell, Science 321, 1457 (2008).CrossRefGoogle Scholar
  5. 5.
    M. Matsumoto, M. Mori, T. Haraguchi, M. Ohtani, T. Kubo, K. Matsumoto, and H. Matsuda, SAE Int. J. Eng. 8, 1815 (2015).Google Scholar
  6. 6.
    D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (Boca Raton: CRC Press, Taylor & Francis Group, 2006).Google Scholar
  7. 7.
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
  8. 8.
    J.O. Sofo and G.D. Mahan, Phys. Rev. B 49, 4565 (1994).CrossRefGoogle Scholar
  9. 9.
    H. Kleinke, Chem. Mater. 22, 604 (2010).CrossRefGoogle Scholar
  10. 10.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  11. 11.
    E.S. Toberer, A.F. May, and G.J. Snyder, Chem. Mater. 22, 624 (2010).CrossRefGoogle Scholar
  12. 12.
    T.C. Harman, B. Paris, S.E. Miller, and H.L. Goering, J. Phys. Chem. Solids 2, 181 (1957).CrossRefGoogle Scholar
  13. 13.
    Y. Gelbstein, Z. Dashevsky, and M.P. Dariel, Phys. B 363, 196 (2005).CrossRefGoogle Scholar
  14. 14.
    W. Xie, S. Wang, S. Zhu, J. He, X. Tang, Q. Zhang, and T.M. Tritt, J. Mater. Sci. 48, 2745 (2013).CrossRefGoogle Scholar
  15. 15.
    A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Nature 451, 163 (2008).CrossRefGoogle Scholar
  16. 16.
    A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath, Nature 451, 168 (2008).CrossRefGoogle Scholar
  17. 17.
    H.Y. Lv, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, J. Mater. Chem. A 1, 6831 (2013).CrossRefGoogle Scholar
  18. 18.
    F. Wu, H. Song, F. Gao, W. Shi, J. Jia, and X. Hu, J. Electron. Mater. 42, 1140 (2013).CrossRefGoogle Scholar
  19. 19.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).CrossRefGoogle Scholar
  20. 20.
    Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G.J. Snyder, Nature 473, 66 (2011).CrossRefGoogle Scholar
  21. 21.
    P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006).CrossRefGoogle Scholar
  22. 22.
    J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. D’Angelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006).CrossRefGoogle Scholar
  23. 23.
    K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).CrossRefGoogle Scholar
  24. 24.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, and M.G. Kanatzidis, Nature 489, 414 (2012).CrossRefGoogle Scholar
  25. 25.
    X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, J. Am. Chem. Soc. 133, 7837 (2011).CrossRefGoogle Scholar
  26. 26.
    X. Shi, J. Yang, S. Bai, J. Yang, H. Wang, M. Chi, J.R. Salvador, W. Zhang, L. Chen, and W. Wong-Ng, Adv. Funct. Mater. 20, 755 (2010).CrossRefGoogle Scholar
  27. 27.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).CrossRefGoogle Scholar
  28. 28.
    R. Nesper, Prog. Solid State Chem. 20, 1 (1990).CrossRefGoogle Scholar
  29. 29.
    H. Xu, K.M. Kleinke, T. Holgate, H. Zhang, Z. Su, T.M. Tritt, and H. Kleinke, J. Appl. Phys. 105, 053703 (2009).CrossRefGoogle Scholar
  30. 30.
    A. Zevalkink, W.G. Zeier, G. Pomrehn, E. Schechtel, W. Tremel, and G.J. Snyder, Energy Environ. Sci. 5, 9121 (2012).CrossRefGoogle Scholar
  31. 31.
    E.S. Toberer, S.R. Brown, T. Ikeda, S.M. Kauzlarich, and G.J. Snyder, Appl. Phys. Lett. 93, 062110 (2008).CrossRefGoogle Scholar
  32. 32.
    E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Adv. Funct. Mater. 18, 2795 (2008).CrossRefGoogle Scholar
  33. 33.
    T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).CrossRefGoogle Scholar
  34. 34.
    K. Kurosaki and S. Yamanaka, Phys. Status Solidi 210, 82 (2013).CrossRefGoogle Scholar
  35. 35.
    Q. Guo, M. Chan, B.A. Kuropatwa, and H. Kleinke, Chem. Mater. 25, 4097 (2013).CrossRefGoogle Scholar
  36. 36.
    K. Kurosaki, A. Kosuga, H. Muta, M. Uno, and S. Yamanaka, Appl. Phys. Lett. 87, 061919 (2005).CrossRefGoogle Scholar
  37. 37.
    B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, Phys. Rev. Lett. 86, 4350 (2001).CrossRefGoogle Scholar
  38. 38.
    Q. Guo, A. Assoud, and H. Kleinke, Adv. Energy Mater. 4, 1400348 (2014).CrossRefGoogle Scholar
  39. 39.
    S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).CrossRefGoogle Scholar
  40. 40.
    T. Ikeda, L. Haviez, Y. Li, and G.J. Snyder, Small 8, 2350 (2012).CrossRefGoogle Scholar
  41. 41.
    M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Thin Solid Films 461, 86 (2004).CrossRefGoogle Scholar
  42. 42.
    Y. Maeda, K.P. Homewood, T. Sadoh, Y. Terai, K. Yamaguchi, K. Akiyama, M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, Thin Solid Films 515, 8237 (2007).CrossRefGoogle Scholar
  43. 43.
    H. Gao, T. Zhu, X. Liu, L. Chen, and X. Zhao, J. Mater. Chem. 21, 5933 (2011).CrossRefGoogle Scholar
  44. 44.
    D. Berthebaud and F. Gascoin, J. Solid State Chem. 202, 61 (2013).CrossRefGoogle Scholar
  45. 45.
    G. Fu, L. Zuo, J. Longtin, C. Nie, and R. Gambino, J. Appl. Phys. 114, 144905 (2013).CrossRefGoogle Scholar
  46. 46.
    H. Itahara, T. Yamada, S.-Y. Oh, R. Asahi, H. Imagawa, and H. Yamane, Chem. Commun. 50, 4315 (2014).CrossRefGoogle Scholar
  47. 47.
    R. Nakagawa, H. Katsumata, S. Hashimoto, and S. Sakuragi, Jpn. J. Appl. Phys. 54, 085503 (2015).CrossRefGoogle Scholar
  48. 48.
    Q. Zhang, X. Su, Y. Yan, H. Xie, T. Liang, Y. You, X. Tang, and C. Uher, ACS Appl. Mater. Interfaces 8, 3268 (2016).CrossRefGoogle Scholar
  49. 49.
    X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D. Yang, H. Chi, X. Tang, Q. Zhang, and C. Uher, Nat. Commun. 5, 4908 (2014).CrossRefGoogle Scholar
  50. 50.
    D. Wood and A. Zunger, Phys. Rev. B 34, 4105 (1986).CrossRefGoogle Scholar
  51. 51.
    M. Kubouchi, K. Hayashi, and Y. Miyazaki, J. Alloys Compd. 617, 389 (2014).CrossRefGoogle Scholar
  52. 52.
    Z. Du, T. Zhu, Y. Chen, J. He, H. Gao, G. Jiang, T.M. Tritt, and X. Zhao, J. Mater. Chem. 22, 6838 (2012).CrossRefGoogle Scholar
  53. 53.
    O.O. Kurakevych, T.A. Strobel, D.Y. Kim, and G.D. Cody, Angew. Chem. Int. Ed. 52, 8930 (2013).CrossRefGoogle Scholar
  54. 54.
    O. Madelung, U. Rössler, M. Schulz (eds.), Non-Tetrahedrally Bonded Elements and Binary Compounds I, Landolt-Börnstein—Group III Condensed Matter, Vol. 41C (Berlin: Springer, 1998)Google Scholar
  55. 55.
    U. Winkler, Helv. Phys. Acta 28, 633 (1955).Google Scholar
  56. 56.
    D. Cederkrantz, N. Farahi, K.A. Borup, B.B. Iversen, M. Nygren, and A.E.C. Palmqvist, J. Appl. Phys. 111, 023701 (2012).CrossRefGoogle Scholar
  57. 57.
    V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).CrossRefGoogle Scholar
  58. 58.
    N. Farahi, S. Prabhudev, G. Botton, J. Zhao, J.S. Tse, Z. Liu, J.R. Salvador, and H. Kleinke, J. Alloys Compd. 644, 249 (2015).CrossRefGoogle Scholar
  59. 59.
    L. Chen, G. Jiang, Y. Chen, Z. Du, X. Zhao, T. Zhu, J. He, and T.M. Tritt, J. Mater. Res. 26, 3038 (2011).CrossRefGoogle Scholar
  60. 60.
    E.N. Nikitin, V.G. Bazanov, and V.I. Tarasov, Sov. Phys. Solid State 3, 2648 (1961).Google Scholar
  61. 61.
    J.-W. Liu, M. Song, M. Takeguchi, N. Tsujii, and Y. Isoda, J. Electron. Mater. 44, 407 (2015).CrossRefGoogle Scholar
  62. 62.
    N. Farahi, M. VanZant, J. Zhao, J.S. Tse, S. Prabhudev, G. Botton, J.R. Salvador, F. Borondics, Z. Liu, and H. Kleinke, Dalton Trans. 43, 14983 (2014).CrossRefGoogle Scholar
  63. 63.
    A. Kolezynski, P. Nieroda, P. Jelen, M. Sitarz, and K.T. Wojciechowski, Vib. Spectrosc. 76, 31 (2015).CrossRefGoogle Scholar
  64. 64.
    S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.-P. Fleurial, J. Mater. Chem. 21, 12259 (2011).CrossRefGoogle Scholar
  65. 65.
    X. Zhang, H. Liu, Q. Lu, J. Zhang, and F. Zhang, Appl. Phys. Lett. 103, 063901 (2013).CrossRefGoogle Scholar
  66. 66.
    W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang, and C. Uher, J. Solid State Chem. 203, 333 (2013).CrossRefGoogle Scholar
  67. 67.
    W. Liu, X. Tang, H. Li, and J. Sharp, Chem. Mater. 23, 5256 (2011).CrossRefGoogle Scholar
  68. 68.
    W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).CrossRefGoogle Scholar
  69. 69.
    H. Ning, G.D. Mastrorillo, S. Grasso, B. Du, T. Mori, C. Hu, Y. Xu, K. Simpson, G. Maizza, and M. Reece, J. Mater. Chem. A 3, 17426 (2015).CrossRefGoogle Scholar
  70. 70.
    Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).CrossRefGoogle Scholar
  71. 71.
    A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013).CrossRefGoogle Scholar
  72. 72.
    W. Liu, K. Yin, X. Su, H. Li, Y. Yan, X. Tang, and C. Uher, Intermetallics 32, 352 (2013).CrossRefGoogle Scholar
  73. 73.
    H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Compd. 509, 6503 (2011).CrossRefGoogle Scholar
  74. 74.
    Q. Zhang, L. Cheng, W. Liu, Y. Zheng, X. Su, H. Chi, H. Liu, Y. Yan, X. Tang, and C. Uher, Phys. Chem. Chem. Phys. 16, 23576 (2014).CrossRefGoogle Scholar
  75. 75.
    X. Tang, G. Wang, Y. Zheng, Y. Zhang, K. Peng, L. Guo, S. Wang, M. Zeng, J. Dai, G. Wang, and X. Zhou, Scr. Mater. 115, 52 (2016).CrossRefGoogle Scholar
  76. 76.
    P. Gao, J.D. Davis, V.V. Poltavets, and T.P. Hogan, J. Mater. Chem. C 4, 929 (2016).CrossRefGoogle Scholar
  77. 77.
    Y. Sadia and Y. Gelbstein, J. Electron. Mater. 41, 1504 (2012).CrossRefGoogle Scholar
  78. 78.
    W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).CrossRefGoogle Scholar
  79. 79.
    M. Yoshikura and T. Itoh, J. Jpn. Soc. Powder Powder Metall. 57, 242 (2010).CrossRefGoogle Scholar
  80. 80.
    M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, J. Metastable Nanocryst. Mater. 8, 918 (2000).CrossRefGoogle Scholar
  81. 81.
    M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).CrossRefGoogle Scholar
  82. 82.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).CrossRefGoogle Scholar
  83. 83.
    S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).CrossRefGoogle Scholar
  84. 84.
    S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio, J. Solid State Chem. 193, 142 (2012).CrossRefGoogle Scholar
  85. 85.
    T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N.D. Browning, and S.M. Kauzlarich, J. Mater. Chem. 22, 24805 (2012).CrossRefGoogle Scholar
  86. 86.
    N. Farahi, S. Prabhudev, M. Bugnet, G. Botton, J. Zhao, J.S. Tse, J.R. Salvador, and H. Kleinke, RSC Adv. 5, 65328 (2015).CrossRefGoogle Scholar
  87. 87.
    A.S. Tazebay, S.-I. Yi, J.K. Lee, H. Kim, J.-H. Bahk, S.L. Kim, S.-D. Park, H.S. Lee, A. Shakouri, and C. Yu, ACS Appl. Mater. Interfaces 8, 7003 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada

Personalised recommendations