Advertisement

JOM

, Volume 68, Issue 8, pp 2126–2137 | Cite as

Vision for Data and Informatics in the Future Materials Innovation Ecosystem

  • Surya R. KalidindiEmail author
  • Andrew J. Medford
  • David L. McDowell
Article

Abstract

The high cost and time typically expended in the successful deployment of new materials into high-performance commercial products is attributable to multiple factors. The most significant of these include the heavy reliance on experiments, the persisting disconnect between multiscale experiments and multiscale models, the lack of a broadly accessible data and knowledge infrastructure that can support the implementation of a holistic systems approach, and the lack of a suitable framework for facilitating and enhancing the critically needed cross-disciplinary collaborations. The emerging discipline of materials data science and informatics (MDSI) promises to address these key technology gaps. The potential benefits to the materials innovation enterprise that could accrue from an aggressive adoption of the novel concepts and toolsets offered by MDSI are examined. A specific vision is expounded for the role of MDSI in bridging the large gap that exists between the multiscale materials experiments and the multiscale materials models.

Keywords

Material Data Georgia Tech Integrate Computational Material Engineering Material Innovation Material Genome Initiative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

SRK and AM acknowledge support from NIST 70NANB14H191 and internal funding from Georgia Tech’s IDEAS grant. DLM is grateful for the support of the Georgia Tech Institute for Materials, as well as the Carter N. Paden, Jr. Distinguished Chair in Metals Processing.

References

  1. 1.
    T.M. Pollock, J.E. Allison, D.G. Backman, M.C. Boyce, M. Gersh, E.A. Holm, R. LeSar, M. Long, A.C. Powell, J.J. Schirra, D.D. Whitis, and C. Woodward, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (Washington, DC: The National Acamedies Press, 2008).Google Scholar
  2. 2.
    G.J. Schmitz and U. Prahl, Integr. Mater. Manuf. Innov. (2014). doi: 10.1186/2193-9772-3-2.Google Scholar
  3. 3.
    Materials Genome Initiative for Global Competitiveness (National Science and Technology Council, 2011), http://www.whitehouse.gov/sites/default/files/microsites/ostp/materials_genome_initiative-final.pdf. Accessed 29 Mar 2016.
  4. 4.
    M. Drosback, JOM 66, 334 (2014).CrossRefGoogle Scholar
  5. 5.
    The Materials Genome Initative Stragetic Plan (Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, 2014). https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/mgi_strategic_plan_-_dec_2014.pdf. Accessed 29 Mar 2016.
  6. 6.
    J. Warren, The materials genome initiative, data, open science, and NIST (Research Data Alliance, 2014). https://rd-alliance.org/sites/default/files/RDA-MGI-ODIpptx.pptx.pdf. Accessed 29 Mar 2016.
  7. 7.
    T.W. Eager and M. King, Technol. Rev. 98, 42 (1995).Google Scholar
  8. 8.
    Implementing ICME in the Aerospace, Automotive, and Maritime Industries (The Minerals, Metals and Materials Society, 2013), http://www.tms.org/icmestudy/. Accessed 29 Mar 2016.
  9. 9.
    Modeling Across Scales: A Roadmapping Study for Connecting Materials Models and Simulations Across Length and Time Scales (The Minerals, Metals and Materials Society, 2015). http://www.tms.org/multiscalestudy/. Accessed 29 Mar 2016.
  10. 10.
    J.H. Panchal, S.R. Kalidindi, and D.L. McDowell, Comput. Aided Des. 45, 4 (2013).CrossRefGoogle Scholar
  11. 11.
    S.R. Kalidindi, Int. Mater. Rev. 60, 150 (2015).CrossRefGoogle Scholar
  12. 12.
    D.L. McDowell, Int. J. Plast 26, 1280 (2010).CrossRefGoogle Scholar
  13. 13.
    A.A. Salem, S.R. Kalidindi, and S.L. Semiatin, Acta Mater. 53, 3495 (2005).CrossRefGoogle Scholar
  14. 14.
    F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Acta Mater. 58, 1152 (2010).CrossRefGoogle Scholar
  15. 15.
    X.P. Wu, S.R. Kalidindi, C. Necker, and A.A. Salem, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39A, 3046 (2008).CrossRefGoogle Scholar
  16. 16.
    D.L. McDowell, J.H. Panchal, H.-J. Choi, C.C. Seepersad, J.K. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products (New York: Elsevier Inc., 2010).Google Scholar
  17. 17.
    H.J. Choi, D.L. McDowell, J.K. Allen, D. Rosen, and F. Mistree, J. Mech. Des. 130, 031402 (2008).CrossRefGoogle Scholar
  18. 18.
    D.L. McDowell and S.R. Kalidindi, MRS Bull. 41, 326 (2016). doi: 10.1557/mrs.2016.61.CrossRefGoogle Scholar
  19. 19.
    S.R. Kalidindi, D.B. Brough, S. Li, A. Cecen, A.L. Blekh, F. Yannick, P. Congo, and C. Campbell, MRS Bull. (2016). doi: 10.1557/mrs.2016.164.Google Scholar
  20. 20.
    Digital Thread for Smart Manufacturing (National Institute of Standards and Technology, 2014). http://www.nist.gov/el/msid/syseng/dtsm.cfm. Accessed 29 Mar 2016.
  21. 21.
    “DMDII” (Digital Manufacturing and Design Innovation Institute, 2016). http://dmdii.uilabs.org/. Accessed 29 Mar 2016.
  22. 22.
    The Digital Twin (General Electric, 2015). http://gelookahead.economist.com/digital-twin/. Accessed 29 Mar 2016.
  23. 23.
    “Digital Tapestry” (Lockheed Martin, 2016). http://www.lockheedmartin.com/us/ssc/digital-tapestry.html. Accessed 29 Mar 2016.
  24. 24.
    A National Strategic Plan for Advanced Manufacturing (National Science and Technology Council Executive Office of the President, 2012). https://www.whitehouse.gov/sites/default/files/microsites/ostp/iam_advancedmanufacturing_strategicplan_2012.pdf. Accessed 29 Mar 2016.
  25. 25.
    National Network for Manufacturing Innovation (Advanced Manufacturing National Program Office, 2015), https://www.manufacturing.gov/nnmi-institutes/. Accessed 29 Mar 2016.
  26. 26.
    Materials Data Analytics: A Path-Finding Workshop (ASM International, 2015). http://www.asminternational.org/documents/10192/25925847/1-MDA-Henry+Intro+2015-10-08.pdf/a67c84f5-4f44-48e3-b096-5a70352b338a. Accessed 29 Mar 2016.
  27. 27.
    Building an Integrated MGI Accelerator Network (Materials Accelerator Network, 2014). http://acceleratornetwork.org/events/past-events/building-an-integrated-mgi-accelerator-network/. Accessed 29 Mar 2016.
  28. 28.
    J.H. Forsmark, J.W. Zindel, L. Godlewski, J. Zheng, J.E. Allison, and M. Li, Integr. Mater. Manuf. Innov. (2015). doi: 10.1186/s40192-015-0033-0.Google Scholar
  29. 29.
    W.F. Maier, K. Stowe, and S. Sieg, Angewandte Chem. Int. Edition 46, 6016 (2007).CrossRefGoogle Scholar
  30. 30.
    R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, and H. Lam, ACS Comb. Sci. 13, 579 (2011).CrossRefGoogle Scholar
  31. 31.
    C.G. Simon and S. Lin-Gibson, Adv. Mater. 23, 369 (2011).CrossRefGoogle Scholar
  32. 32.
    J.C. Zhao, Chin. Sci. Bull. 59, 1652 (2014).CrossRefGoogle Scholar
  33. 33.
    M.L. Green, I. Takeuchi, and J.R. Hattrick-Simpers, J. Appl. Phys. 113, 231101 (2013).CrossRefGoogle Scholar
  34. 34.
    H. Springer and D. Raabe, Acta Mater. 60, 4950 (2012).CrossRefGoogle Scholar
  35. 35.
    F. Warchomicka, C. Poletti, M. Stockinger, and T. Henke, Int. J. Mater. Form. 3, 215 (2010).CrossRefGoogle Scholar
  36. 36.
    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley, Entropy 16, 494 (2014).CrossRefGoogle Scholar
  37. 37.
    J.C. Zhao, M.R. Jackson, L.A. Peluso, and L.N. Brewer, JOM 54, 42 (2002).CrossRefGoogle Scholar
  38. 38.
    J.C. Zhao, J. Mater. Res. 16, 1565 (2001).CrossRefGoogle Scholar
  39. 39.
    O.L. Warren and T.J. Wyrobek, Meas. Sci. Technol. 16, 100 (2005).CrossRefGoogle Scholar
  40. 40.
    V.V. Shastry, V.D. Divya, M.A. Azeem, A. Paul, D. Dye, and U. Ramamurty, Acta Mater. 61, 5735 (2013).CrossRefGoogle Scholar
  41. 41.
    S.M. Han, R. Shah, R. Banerjee, G.B. Viswanathan, B.M. Clemens, and W.D. Nix, Acta Mater. 53, 2059 (2005).CrossRefGoogle Scholar
  42. 42.
    E. Menendez, C. Templier, G. Abrasonis, J.F. Lopez-Barbera, J. Nogues, K. Temst, and J. Sort, Cryst. Eng. Commun. 16, 3515 (2014).CrossRefGoogle Scholar
  43. 43.
    C.A. Tweedie, D.G. Anderson, R. Langer, and K.J. Van Vliet, Adv. Mater. 17, 2599 (2005).CrossRefGoogle Scholar
  44. 44.
    G.W. Milton, The Theory of Composites (Cambridge: Cambridge University Press, 2002).CrossRefzbMATHGoogle Scholar
  45. 45.
    W.F. Brown, J. Chem. Phys. 23, 1514 (1955).CrossRefGoogle Scholar
  46. 46.
    S. Torquato, Random Heterogeneous Materials (New York: Springer-Verlag, 2002).CrossRefzbMATHGoogle Scholar
  47. 47.
    S. Torquato and G. Stell, J. Chem. Phys. 82, 980 (1985).CrossRefGoogle Scholar
  48. 48.
    S. Torquato and G. Stell, J. Chem. Phys. 77, 2071 (1982).MathSciNetCrossRefGoogle Scholar
  49. 49.
    B.L. Adams, S.R. Kalidindi, and D. Fullwood, Microstructure Sensitive Design for Performance Optimization (New York: Elsevier Inc., 2013).Google Scholar
  50. 50.
    D.T. Fullwood, S.R. Niezgoda, B.L. Adams, and S.R. Kalidindi, Progress Mater. Sci. 55, 477 (2010).CrossRefGoogle Scholar
  51. 51.
    E. Kroner, Statistical modelling.Modelling Small Deformations of Polycrystals, ed. J. Gittus and J. Zarka (London: Elsevier Science Publishers, 1986), p. 229.CrossRefGoogle Scholar
  52. 52.
    E. Kroner, J. Mech. Phys. Solids 25, 137 (1977).CrossRefGoogle Scholar
  53. 53.
    S.R. Kalidindi, Hierarchical Materials Informatics (Oxford: Elsevier Inc., 2015).Google Scholar
  54. 54.
    S.R. Kalidindi, S.R. Niezgoda, and A.A. Salem, JOM 63, 34 (2011).CrossRefGoogle Scholar
  55. 55.
    S.R. Niezgoda, Y.C. Yabansu, and S.R. Kalidindi, Acta Mater. 59, 6387 (2011).CrossRefGoogle Scholar
  56. 56.
    A. Cecen, T. Fast, E.C. Kumbur, and S.R. Kalidindi, J. Power Sources 245, 144 (2014).CrossRefGoogle Scholar
  57. 57.
    S.R. Niezgoda, A.K. Kanjarla, and S.R. Kalidindi, Integr. Mater. Manuf. Innov. (2013). doi: 10.1186/2193-9772-2-3.Google Scholar
  58. 58.
    What is Datafication?—Definition and Examples (Upfront Analytics, 2015). http://upfrontanalytics.com/datafication-definition-examples/. Accessed 29 Mar 2016.
  59. 59.
    Materials Data Curation System (Github, 2014). https://github.com/usnistgov/MDCS. Accessed 29 Mar 2016.
  60. 60.
    J.G. Kaufman and E.F. Begley, Adv. Mater. Process. 161, 35 (2003).Google Scholar
  61. 61.
    A.S. Varde, E.F. Begley, and S. Fahrenholz-Mann, MatML: XML for information exchange with materials property data, in Proceedings of the 4th International Workshop on Data Mining Standards, Services and Platforms (2006), p. 47.Google Scholar
  62. 62.
    R.D. Chirico, M. Frenkel, V.V. Diky, K.N. Marsh, and R.C. Wilhoit, J. Chem. Eng. Data 48, 1344 (2003).CrossRefGoogle Scholar
  63. 63.
    The R Project for Statistical Computing (The R Project, 2016). https://www.r-project.org/. Accessed 29 Mar 2016.
  64. 64.
    E. Jones, T. Oliphant, and P. Peterson, SciPy: Open Source Scientific Tools for Python (Enthought, 2016). http://www.scipy.org. Accessed 29 Mar 2016.
  65. 65.
    S.V.D. Walt, S.C. Colbert, and G. Varoquaux, Comput. Sci. Eng. 13, 22 (2011).CrossRefGoogle Scholar
  66. 66.
    F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesney, J. Mach. Learn. Res. 12, 2825 (2011).MathSciNetGoogle Scholar
  67. 67.
    S. Seabold, J. Perktold, in Proceedings of the 9th Python in Science Conference (2010), p. 57.Google Scholar
  68. 68.
    W. McKinney, in Proceedings of the 9th Python in Science Conference (2010), p. 51.Google Scholar
  69. 69.
    Matlab: The language of Technical Computing (Mathworks, 2016). http://www.mathworks.com/products/matlab/index.html. Accessed 29 Mar 2016.
  70. 70.
    D. Wheeler, D. Brough, T. Fast, S. Kalidindi, A. Reid, PyMKS: Materials Knowledge System in Python (Figshare, 2014). http://dx.doi.org/10.6084/m9.figshare.1015761. Accessed 29 Mar 2016.
  71. 71.
    Materials Informatics Class Fall 2014 (Georgia Institute of Technology, 2014). http://materials-informatics-class-fall2014.github.io/. Accessed 29 Mar 2016.
  72. 72.
    Materials Informatics Class Fall 2015 (Georgia Institute of Technology, 2015). http://materials-informatics-class-fall2015.github.io/. Accessed 29 Mar 2016.
  73. 73.
    From Learning, Analytics, and Materials to Entrepreneurship and Leadership Doctoral Traineeship Program (Georgia Institute of Technology, 2016). http://www.flamel.gatech.edu/. Accessed 29 Mar 2016.
  74. 74.
    K. Börner, N. Contractor, H.J. Falk-Krzesinski, S.M. Fiore, K.L. Hall, J. Keyton, B. Spring, D. Stokols, W. Trochim, and B. Uzzi, Sci. Transl. Med. 2, 49 (2010).CrossRefGoogle Scholar
  75. 75.
    D. Stokols, S. Misra, R.P. Moser, K.L. Hall, and B.K. Taylor, Am. J. Prev. Med. 35, S96 (2008).CrossRefGoogle Scholar
  76. 76.
    KNIME: Open for Innovation (KNIME, 2016). https://www.knime.org/. Accessed 29 Mar 2016.
  77. 77.
    M.R. Berthold, N. Cebron, F. Dill, T.R. Gabriel, T. Kötter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, KNIME: the Konstanz information miner.Studies in Classification, Data Analysis, and Knowledge Organization, ed. H. Bock, W. Gaul, M. Vichi, and C. Weihs (New York, NY: Springer, 2008), p. 319.Google Scholar
  78. 78.
    MATIN: An e-Collaboration Platform for Materials Informatics (Georgia Institute of Technology, 2016). https://www.matin.gatech.edu. Accessed 5 July 2016.
  79. 79.
    Georgia Tech Institute for Materials (Georgia Institute of Technology, 2016). http://www.materials.gatech.edu/. Accessed 29 March 2016.
  80. 80.
    HUBzero: Platform for Scientific Collaboration (HUBzero Foundation, 2016). https://hubzero.org/. Accessed 29 Mar 2016.
  81. 81.
    Integrated Computational Materials Engineering (National Academies of Engineering, 2008). http://www.nap.edu/catalog/12199/integrated-computational-materials-engineering-a-transformational-discipline-for-improved-competitiveness. Accessed 29 Mar 2016.
  82. 82.
    A National Advanced Manufacturing Portal (Advanced Manufacturing National Program Office, 2016). www.manufacturing.gov. Accessed 5 July 2016.
  83. 83.
    M. Göken, M. Kempf, M. Bordenet, and H. Vehoff, Surf. Interface Anal. 27, 302 (1999).CrossRefGoogle Scholar
  84. 84.
    S. Pathak and S.R. Kalidindi, Mater. Sci. Eng.: R: Rep. 91, 1 (2015).CrossRefGoogle Scholar
  85. 85.
    A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K.A. Persson, APL Mater. 1, 011002 (2013).CrossRefGoogle Scholar
  86. 86.
    R.H. Taylor, F. Rose, C. Toher, O. Levy, K. Yang, M. Buongiorno, M.B. Buongiorno, and S. Curtarolo, Comput. Mater. Sci. 93, 178 (2014).CrossRefGoogle Scholar
  87. 87.
    L. Atzori, A. Iera, and G. Morabito, Comput. Netw. 54, 2787 (2010).CrossRefGoogle Scholar
  88. 88.
    Y. Demchenko, P. Grosso, C. De Laat, and P. Membrey, Addressing big data issues in scientific data infrastructure, in Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (2013), p. 48.Google Scholar
  89. 89.
    T. Fast, S.R. Niezgoda, and S.R. Kalidindi, Acta Mater. 59, 699 (2011).CrossRefGoogle Scholar
  90. 90.
    J. Wellendorff, K.T. Lundgaard, A. Møgelhøj, V. Petzold, D.D. Landis, J.K. Nørskov, T. Bligaard, and K.W. Jacobsen, Phys. Rev. B Condens. Matter Mater. Phys. 85, 235149 (2012).CrossRefGoogle Scholar
  91. 91.
    S. M. Arnold, B. A. Bednarcyk, N. Austin, I. Terentjev, D. Cebon, and W. Marsden, Information management workflow and tools enabling multiscale modeling within ICME Paradigm, in 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2016), p. 1174.Google Scholar
  92. 92.
    B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg, I. Albert, and J. Taylor, Genome Res. 15, 1451 (2005).CrossRefGoogle Scholar
  93. 93.
    B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A. Lee, J. Tao, and Y. Zhao, Concurr. Comput. Pract. Exp. 18, 1039 (2006).CrossRefGoogle Scholar
  94. 94.
    Materials Data Challenge 2016 (Georgia Institute of Technology, 2016). http://www.flamel.gatech.edu/data-challenge-2016. Accessed 5 July 2016.
  95. 95.
    Structural Materials Data Demonstration Project (ASM International, 2015). http://www.asminternational.org/web/cmdnetwork/projects/structural-materials. Accessed 29 Mar 2016.
  96. 96.
    S.R. Kalidindi and M.D. Graef, Annu. Rev. Mater. Res. 45, 171 (2015).CrossRefGoogle Scholar
  97. 97.
    A.F. Rutkowski, D.R. Vogel, M. Van Genuchten, T.M.A. Bemelmans, and M. Favier, IEEE Trans. Prof. Commun. 45, 219 (2002).CrossRefGoogle Scholar
  98. 98.
    NRT: Data-Enabled Discovery and Design of Energy Materials (D3EM) (Texas A&M University, 2015). https://engineering.tamu.edu/news/2015/08/19/texas-am-receives-3-million-nsf-grant-to-train-graduate-students. Accessed 29 Mar 2016.
  99. 99.
    Master’s Program in Materials Science and Simulation at Ruhr-University Bochum (Ruhr-University Bochum, 2016). http://www.icams.de/content/master-course-mss. Accessed 29 Mar 2016.
  100. 100.
    ICME courses at Mississippi State University (Mississippi State University, 2015). https://icme.hpc.msstate.edu/mediawiki/index.php/Mississippi_State_University. Accessed 29 Mar 2016.
  101. 101.
    ICME Masters certificate at Northwestern University (Northwestern University, 2016). http://www.mccormick.northwestern.edu/materials-science/documents/graduate/icme-brochure.pdf. Accessed 29 Mar 2016.
  102. 102.
    CAMD Summer School on Electronic Structure Theory and Materials Design (Technical University of Denmark, 2016), http://www.fysik.dtu.dk/english/Research/CAMD/Events/Summer-school-2016. Accessed 29 Mar 2016.
  103. 103.
    The University of Michigan Summer School on Integrated Computational Materials Education (University of Michigan, 2016). http://icmed.engin.umich.edu. Accessed 29 Mar 2016.
  104. 104.
    IIMEC Summer School on Computational Materials Science Across Scales (Texas A&M University, 2015). http://engineering.tamu.edu/news/2015/08/03/texas-am-hosts-fourth-iimec-summer-school-on-computational-materials-science-across-scales. Accessed 29 Mar 2016.
  105. 105.
    Lawrence Livermore National Laboratory Computational Chemistry and Materials Science Summer Institute (Lawrence Livermore National Laboratory, 2015). https://www-pls.llnl.gov/?url=jobs_and_internships-internships-ccms. Accessed 29 Mar 2016.
  106. 106.
    Cyberinfrastructure for Atomistic Materials Science Center Summer Workshop (University of Florida, 2016). http://cams.mse.ufl.edu. Accessed 29 Mar 2016.
  107. 107.
    Materials Data Science and Informatics (Coursera). https://www.coursera.org/learn/material-informatics. Accessed 20 July 2016.

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Surya R. Kalidindi
    • 1
    Email author
  • Andrew J. Medford
    • 1
  • David L. McDowell
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations