JOM

, Volume 68, Issue 10, pp 2624–2631 | Cite as

Selective Recovery of Lithium from Cathode Materials of Spent Lithium Ion Battery

  • Akitoshi Higuchi
  • Naoki Ankei
  • Syouhei Nishihama
  • Kazuharu Yoshizuka
Article

Abstract

Selective recovery of lithium from four kinds of cathode materials, manganese-type, cobalt-type, nickel-type, and ternary-type, of spent lithium ion battery was investigated. In all cathode materials, leaching of lithium was improved by adding sodium persulfate (Na2S2O8) as an oxidant in the leaching solution, while the leaching of other metal ions (manganese, cobalt, and nickel) was significantly suppressed. Optimum leaching conditions, such as pH, temperature, amount of Na2S2O8, and solid/liquid ratio, for the selective leaching of lithium were determined for all cathode materials. Recovery of lithium from the leachate as lithium carbonate (Li2CO3) was then successfully achieved by adding sodium carbonate (Na2CO3) to the leachate. Optimum recovery conditions, such as pH, temperature, and amount of Na2CO3, for the recovery of lithium as Li2CO3 were determined for all cases. Purification of Li2CO3 was achieved by lixiviation in all systems, with purities of the Li2CO3 higher than 99.4%, which is almost satisfactory for the battery-grade purity of lithium.

References

  1. 1.
    E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, and H.W. Lin, J. Power Sources 21, 25 (1987).CrossRefGoogle Scholar
  2. 2.
    C.M. Sabin, U.S. patent 5,690,718 (1997).Google Scholar
  3. 3.
    A. Lundblad and B. Bergman, Solid State Ion. 96, 183 (1997).CrossRefGoogle Scholar
  4. 4.
    J. Nan, D. Han, and X. Zuo, J. Power Sources 152, 278 (2005).CrossRefGoogle Scholar
  5. 5.
    D.I. Ra and K.S. Han, J. Power Sources 163, 284 (2006).CrossRefGoogle Scholar
  6. 6.
    C.K. Lee and K.I. Rhee, Hydrometallurgy 68, 5 (2003).CrossRefGoogle Scholar
  7. 7.
    F. Pagnanelli, E. Moscardini, G. Granata, S. Cerbelli, L. Agosta, A. Fieramosca, and L. Toro, J. Ind. Eng. Chem. 20, 3201 (2014).CrossRefGoogle Scholar
  8. 8.
    L. Li, L. Zhai, X. Zhang, J. Lu, R. Chen, and F. Wu, J. Power Sources 262, 380 (2014).CrossRefGoogle Scholar
  9. 9.
    X. Chen and T. Zhou, Waste Manag. Res. 32, 1083 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Chen, B. Xu, T. Zhou, D. Liu, H. Hu, and S. Fan, Sep. Purif. Technol. 144, 197 (2015).CrossRefGoogle Scholar
  11. 11.
    X. Chen, Y. Chen, T. Zhou, D. Liu, H. Hu, and S. Fan, Waste Manag. 38, 349 (2015).CrossRefGoogle Scholar
  12. 12.
    H. Shalchian, A. Rafsanjani-Abbasi, J. Vahdati-Khaki, and A. Babakhani, Metall. Mater. Trans. B 46, 38 (2014).CrossRefGoogle Scholar
  13. 13.
    T.K. Ha, B.H. Kwon, K.S. Park, and D. Mohapatra, Sep. Purif. Technol. 145, 116 (2015).CrossRefGoogle Scholar
  14. 14.
    Y. He and Z. Xu, RSC Adv. 5, 8957 (2015).CrossRefGoogle Scholar
  15. 15.
    P.K. Parhi, T.R. Sethy, P.C. Rout, and K. Sarangi, J. Ind. Eng. Chem. 21, 604 (2015).CrossRefGoogle Scholar
  16. 16.
    S. Choi and A. Manthiram, J. Electrochem. Soc. 149, A1157 (2002).CrossRefGoogle Scholar
  17. 17.
    S. Joo, J. Kang, H. Chang, and S.M. Shin, Metall. Mater. Trans. 54, 844 (2013).Google Scholar
  18. 18.
    Z. Xu, H. Zhang, R. Wang, W. Gui, G. Liu, and Y. Yang, Ind. Eng. Chem. Res. 53, 16502 (2012).CrossRefGoogle Scholar
  19. 19.
    J.W. An, D.J. Kang, K.T. Tran, M.J. Kim, T. Lim, and T. Tran, Hydrometallurgy 117–118, 64 (2012).CrossRefGoogle Scholar
  20. 20.
    Y. Tanimura, K. Mitsuhashi, R. Kawarabuki, M. Kawata, and Y. Yamaguchi, U.S. patent 8920763 B2 (2014).Google Scholar
  21. 21.
    S.H. Smith Jr., D.D. Williams, and R.R. Miller, J. Chem. Eng. Data 16, 74 (1971).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Akitoshi Higuchi
    • 1
  • Naoki Ankei
    • 1
  • Syouhei Nishihama
    • 1
  • Kazuharu Yoshizuka
    • 1
  1. 1.Department of Chemical Engineering, Faculty of Environmental EngineeringThe University of KitakyushuKitakyushuJapan

Personalised recommendations