Skip to main content
Log in

A Universal Approach Towards Computational Characterization of Dislocation Microstructure

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Dislocations—linear defects within the crystal lattice of, e.g., metals—have been directly observed and analyzed for nearly a century. While experimental characterization methods can nowadays reconstruct three-dimensional pictures of complex dislocation networks, simulation methods are at the same time more and more able to predict the evolution of such systems in great detail. Concise methods for analyzing and comparing dislocation microstructure, however, are still lagging behind. We introduce a universal microstructure “language” which could be used for direct comparisons and detailed analysis of very different experimental and simulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Materials Genome Initiative (2016). http://www.mgi.gov. Accessed 4 Jan 2016.

  2. A. Prakash, J. Guénolé, J. Wang, J. Müller, E. Spiecker, M.J. Mills, I. Povstugar, P. Choi, D. Raabe, E. Bitzek, Acta. Mater. 92, 33 (2015).

    Article  Google Scholar 

  3. J. Lepinoux, L.P. Kubin, Scr. Metall. Mater. 21(6), 833 (1987).

    Article  Google Scholar 

  4. N.M. Ghoniem, R.J. Amodeo, Solid State Phenom. 3&4, 377 (1988).

    Article  Google Scholar 

  5. B. Devincre, M. Condat, Acta. Metall. Mater. 40(10), 2629 (1992).

    Article  Google Scholar 

  6. H.M. Zbib, M. Rhee, J.P. Hirth, Int. J. Mech. Sci. 40(2–3), 113 (1998).

    Article  Google Scholar 

  7. D. Weygand, L.H. Friedman, E. Van der Giessen, A. Needleman, Modell. Simul. Mater. Sci. Eng. 10(4), 437 (2002).

    Article  Google Scholar 

  8. G. Po, N.M. Ghoniem, J. Mech. Phys. Solids 66, 103 (2014).

    Article  MathSciNet  Google Scholar 

  9. M. Peach, J.S. Koehler, Phys. Rev. 80(3), 436 (1950).

    Article  MathSciNet  Google Scholar 

  10. A. El-Azab, Phys. Rev. B 61, 11956 (2000).

    Article  Google Scholar 

  11. A. Arsenlis, D.M. Parks, R. Becker, V.V. Bulatov, J. Mech. Phys. Solids 52(6), 1213 (2004).

    Article  MathSciNet  Google Scholar 

  12. C. Reuber, P. Eisenlohr, F. Roters, D. Raabe, Acta. Mater. 71, 333 (2014).

    Article  Google Scholar 

  13. Y. Xiang, J. Mech. Phys. Solids 57(4), 728 (2009).

    Article  MathSciNet  Google Scholar 

  14. S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, J. Mater. Res. 26(5), 623 (2011).

    Article  Google Scholar 

  15. T. Hochrainer, S. Sandfeld, M. Zaiser, P. Gumbsch, J. Mech. Phys. Solids 63, 167 (2014).

    Article  Google Scholar 

  16. S. Yefimov, I. Groma, E. Van der Giessen, J. Mech. Phys. Solids 52(2), 279 (2004).

    Article  MathSciNet  Google Scholar 

  17. C.B. Hirschberger, R.H.J. Peerlings, W.A.M. Brekelmans, M.G.D. Geers, Modell. Simul. Mater. Sci. Eng. 19, 085002 (2011).

    Article  Google Scholar 

  18. S. Sandfeld, M. Monavari, M. Zaiser, Modell. Simul. Mater. Sci. Eng. 21(8), 085006 (2013).

    Article  Google Scholar 

  19. T.J. Ruggles, D.T. Fullwood, J.W. Kysar, Int. J. Plast. 76, 231 (2016).

    Article  Google Scholar 

  20. T. Hochrainer, M. Zaiser, P. Gumbsch, AIP Conference Proceedings, Vol. 1168 (2009), pp. 1133–1136.

  21. T. Hochrainer, Philos. Mag. 95(12), 1 (2015).

    Article  Google Scholar 

  22. S. Sandfeld, G. Po, Modell. Simul. Mater. Sci. Eng. 23(8), 085003 (2015).

    Article  Google Scholar 

  23. T. Hochrainer, M. Zaiser, P. Gumbsch, Philos. Mag. 87(8–9), 1261 (2007).

    Article  Google Scholar 

  24. S. Sandfeld, T. Hochrainer, M. Zaiser, P. Gumbsch, Philos. Mag. 90(27–28), 3697 (2010).

    Article  Google Scholar 

  25. S. Sandfeld, E. Thawinan, C. Wieners, Int. J. Plast. 72, 1 (2015).

    Article  Google Scholar 

  26. S. Sandfeld, V. Verbeke, and B. Devincre, Symposium RR–Scaling Effects on Plasticity—Synergy between Simulations and Experiments, MRS Proceedings, Vol. 1755 (2105). doi:10.1557/opl.2015.200.

  27. M. Monavari, M. Zaiser, and S. Sandfeld, Symposium KK–Dislocation Plasticity, MRS Proceedings, Vol. 1651 (2014). doi:10.1557/opl.2014.62.

  28. M. Monavari, S. Sandfeld, M. Zaiser, ArXiv e-prints, 1509.05617 (2015).

  29. D. Steinberger, M. Leimberger, S. Sandfeld, TMS 2016: 145th Annual Meeting & Exhibition: Supplemental Proceedings (Wiley & Sons, Inc., Hoboken, 2016). doi:10.1002/9781119274896.ch64.

  30. B. Devincre, R. Madec, G. Monnet, S. Queyreau, R. Gatti, and L. Kubin, Mechanics of Nano-Objects, ed. F. Samuel, P. Anne and T. Olivier (Paris: Presses de Mines, 2011), p. 81.

  31. D2C (2016). http://www.dd2cd.com. Accessed 14 Mar 2016.

Download references

Acknowledgment

Financial support by the German Research Foundation (DFG) through the European M.ERA-NET project FASS, Grant No. SA2292/2, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sandfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberger, D., Gatti, R. & Sandfeld, S. A Universal Approach Towards Computational Characterization of Dislocation Microstructure. JOM 68, 2065–2072 (2016). https://doi.org/10.1007/s11837-016-1967-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-016-1967-1

Keywords

Navigation