, Volume 68, Issue 7, pp 1925–1931 | Cite as

Magnetic Properties of Friction Stir Processed Composite

  • Shamiparna Das
  • Nelson Y. Martinez
  • Santanu Das
  • Rajiv S. Mishra
  • Glenn J. Grant
  • Saumyadeep Jana
  • Evgueni Polikarpov


Of the many existing inspection or monitoring systems, each has its own advantages and drawbacks. These systems are usually comprised of semi-remote sensors that frequently cause difficulty in reaching complex areas of a component. This study proposes to overcome that difficulty by developing embedded functional composites, so that embedding can be achieved in virtually any component part and periodically can be interrogated by a reading device. The “reinforcement rich” processed areas can then be used to record properties such as strain, temperature, and stress state, to name a few, depending on the reinforcement material. Friction stir processing was used to fabricate a magnetostrictive composite by embedding galfenol particles into a nonmagnetic aluminum matrix. The aim was to develop a composite that produces strain in response to a varying magnetic field. Reinforcements were distributed uniformly in the matrix. Magnetization curves were studied using a vibrating sample magnetometer. A simple and cost-effective setup was developed to measure the magnetostrictive strain of the composites. Important factors affecting the magnetic properties were identified and the processing route was modified to improve the magnetic response.


Axial Force Friction Stir Processing Traverse Speed Tool Rotation Rate Friction Stir Processing Pass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Pacific Northwest National Laboratory (PNNL) for the financial support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, Scr. Mater. 42, 163 (1999).CrossRefGoogle Scholar
  2. 2.
    R.S. Mishra and Z.Y. Ma, Mater. Sci. Eng. R 50, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    R.S. Mishra, Z.Y. Ma, and I. Charit, Mater. Sci. Eng. A 341, 307 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Shafiei-Zarghani, S.F. Kashani-Bozorg, and A. Zarei-Hanzaki, Mater. Sci. Eng. A 500, 84 (2009).CrossRefGoogle Scholar
  5. 5.
    C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, and C.P. Chang, Acta Mater. 54, 5241 (2006).CrossRefGoogle Scholar
  6. 6.
    C.J. Hsu, P.W. Kao, and N.J. Ho, Mater. Lett. 61, 1315 (2007).CrossRefGoogle Scholar
  7. 7.
    W. Wang, Q. Shi, P. Liu, H. Li, and T. Li, J. Mater. Process. Technol. 209, 2099 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Asadi, G. Faraji, and M. Besharati, Int. J. Adv. Manuf. Technol. 51, 247 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Dixit, J.W. Newkirk, and R.S. Mishra, Scr. Mater. 56, 541 (2007).CrossRefGoogle Scholar
  10. 10.
    D.K. Lim, T. Shibayanagi, and A.P. Gerlich, Mater. Sci. Eng. A 507, 194 (2009).CrossRefGoogle Scholar
  11. 11.
    T.R. Gururaja, W.A. Schulze, L.E. Cross, R.E. Newnham, B.A. Auld, and Y.J. Wang, IEEE Trans. Sonics Ultrason. 32, 481 (1985).CrossRefGoogle Scholar
  12. 12.
    J. Li, K. Takagi, N. Terakubo, and R. Watanabe, Appl. Phys. Lett. 79, 2441 (2001).CrossRefGoogle Scholar
  13. 13.
    K. Takagi, J. Li, S. Yokoyama, and R. Watanabe, J. Eur. Ceram. Soc. 23, 1577 (2003).CrossRefGoogle Scholar
  14. 14.
    F.E. Pinkerton and T.W. Capehart, Appl. Phys. Lett. 70, 2601 (1997).CrossRefGoogle Scholar
  15. 15.
    T.A. Duenas and G.P. Carman, J. Appl. Phys. 87, 4696 (2000).CrossRefGoogle Scholar
  16. 16.
    S. Guruswamy, N. Srisukhumbowornchai, A.E. Clark, J.B. Restorff, and M. Wun-Fogle, Scr. Mater. 43, 239 (2000).CrossRefGoogle Scholar
  17. 17.
    N. Balasubramanian, B. Gattu, and R.S. Mishra, Sci. Technol. Weld. Join. 14, 141 (2009).CrossRefGoogle Scholar
  18. 18.
    S. Mandal, J. Rice, and A.A. Elmustafa, J. Mater. Process. Technol. 203, 411 (2008).CrossRefGoogle Scholar
  19. 19.
    Z.Y. Ma, S.R. Sharma, and R.S. Mishra, Mater. Sci. Eng. A 433, 269 (2006).CrossRefGoogle Scholar
  20. 20.
    Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin, and J.C. Huang, Scr. Mater. 55, 637 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Bednarek, Appl. Phys. A 68, 63 (1999).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Shamiparna Das
    • 1
  • Nelson Y. Martinez
    • 1
  • Santanu Das
    • 1
  • Rajiv S. Mishra
    • 1
  • Glenn J. Grant
    • 2
  • Saumyadeep Jana
    • 3
  • Evgueni Polikarpov
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  2. 2.Energy and Environment DirectoratePacific Northwest National LaboratoryRichlandUSA
  3. 3.Applied Materials and PerformancePacific Northwest National LaboratoryRichlandUSA

Personalised recommendations