Advertisement

JOM

, Volume 68, Issue 5, pp 1427–1445 | Cite as

Direct Numerical Simulations in Solid Mechanics for Quantifying the Macroscale Effects of Microstructure and Material Model-Form Error

  • Joseph E. Bishop
  • John M. Emery
  • Corbett C. Battaile
  • David J. Littlewood
  • Andrew J. Baines
Article

Abstract

Two fundamental approximations in macroscale solid-mechanics modeling are (1) the assumption of scale separation in homogenization theory and (2) the use of a macroscopic plasticity material model that represents, in a mean sense, the multitude of inelastic processes occurring at the microscale. With the goal of quantifying the errors induced by these approximations on engineering quantities of interest, we perform a set of direct numerical simulations (DNS) in which polycrystalline microstructures are embedded throughout a macroscale structure. The largest simulations model over 50,000 grains. The microstructure is idealized using a randomly close-packed Voronoi tessellation in which each polyhedral Voronoi cell represents a grain. An face centered cubic crystal-plasticity model is used to model the mechanical response of each grain. The overall grain structure is equiaxed, and each grain is randomly oriented with no overall texture. The detailed results from the DNS simulations are compared to results obtained from conventional macroscale simulations that use homogeneous isotropic plasticity models. The macroscale plasticity models are calibrated using a representative volume element of the idealized microstructure. Ultimately, we envision that DNS modeling will be used to gain new insights into the mechanics of material deformation and failure.

Keywords

Direct Numerical Simulation Representative Volume Element Plasticity Model Mesh Refinement Direct Numerical Simulation Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We would like to thank Ben Reedlunn for suggesting that we explore the use of the Hosford yield criteria. Also, we would like to thank Bill Scherzinger for the implementation of the Hosford plasticity algorithm within the Sierra finite-element software and discussions of its use. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

References

  1. 1.
    U. Kocks, C. Tome, and H. Wenk (eds.), Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Material Properties (Cambridge University Press, New York, 1998)MATHGoogle Scholar
  2. 2.
    F. Roters, P. Eisenlohr, T. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering (Wiley, Berlin, 2010)CrossRefGoogle Scholar
  3. 3.
    W. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Vemaganti and T. Oden, Comput. Methods Appl. Mech. Eng. 190, 6089 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Romkes, T. Oden, and K. Vemaganti, Mech. Mater. 38, 859 (2006)CrossRefGoogle Scholar
  6. 6.
    I. Temizer and P. Wriggers, Comput. Methods Appl. Mech. Eng. 200, 2639 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Lubliner, Plasticity Theory, Chap. 3.3 (Macmillan, New York, 1990)Google Scholar
  8. 8.
    W. Hosford, J. Appl. Mech. 39, 607 (1972)CrossRefGoogle Scholar
  9. 9.
    J. Vetter (ed.), Contemporary High Performance Computing: From Petascale to Exascale (Chapman and Hall/CRC, New York, 2013)Google Scholar
  10. 10.
    J. Bishop, J. Emery, R. Field, C. Weinberger, and D. Littlewood, Comput. Methods Appl. Mech. Eng. 287, 262 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    V. Tikare, E. Homer, E. Hernandez-Rivera, J. Madison, E. Holm, and B. Patterson, Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes, Technical Report SAND2013-8440, Sandia National Laboratories, 2013Google Scholar
  12. 12.
    S. Lee, G. Rohrer, and A. Rollett, Modell. Simul. Mater. Sci. Eng. 22, 025017 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Ebeida, S. Mitchell, A. Patney, A. Davidson, and J. Owens, Comput. Graph. For. 31, 785 (2012)Google Scholar
  14. 14.
    L. Li, L. Shen, and G. Proust, Int. J. Num. Methods Eng. 103, 144 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. Maniatty and P. Dawson, Int. J. Num. Methods Eng. 35, 1565 (1992)CrossRefGoogle Scholar
  16. 16.
    K. Matouš and A. Maniatty, Int. J. Num. Methods Eng. 60, 2313 (2004)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, T. Hughes, and C. Bajaj, Comput. Methods Appl. Mech. Eng. 199, 405 (2010)CrossRefGoogle Scholar
  18. 18.
    J. Qian, Y. Zhang, W. Wang, A. Lewis, M. Qidwai, and A. Geltmacher, Int. J. Num. Methods Eng. 82, 1406 (2010)MathSciNetGoogle Scholar
  19. 19.
    C. Wang, Modell. Simul. Mater. Sci. Eng. 39, 35 (2007)Google Scholar
  20. 20.
    C. Battaile, J. Emery, L. Brewer, and B. Boyce, Philos. Mag. 95, 1069 (2015)CrossRefGoogle Scholar
  21. 21.
    H. Lim, R. Dingreville, L. Deibler, T. Buchheit, and C. Battaile, Comput. Mater. Sci. 117, 437 (2016)CrossRefGoogle Scholar
  22. 22.
    R. Quey, P. Dawson, and F. Barbe, Comput. Methods Appl. Mech. Eng. 200, 1729 (2011)CrossRefGoogle Scholar
  23. 23.
    H. Lim, F. Abdeljawad, S. Owen, B. Hanks, J. Foulk, and C. Battaile, Modell. Simul. Mater. Sci. Eng. (2016, accepted)Google Scholar
  24. 24.
    T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Int. J. Solids Struct. 40, 3647 (2003)CrossRefGoogle Scholar
  25. 25.
    P. Eisenlohr, M. Diehl, R. Lebenshohn, and F. Roters, Int. J. Plast. 46, 37 (2013)CrossRefGoogle Scholar
  26. 26.
    D. Pyle, J. Lu, D. Littlewood, and A. Maniatty, Comput. Mech. 52, 135 (2013)CrossRefGoogle Scholar
  27. 27.
    SIERRA Solid Mechanics Team, Sierra/SolidMechanics 4.36 User’s Guide, SAND report SAND2015-2199, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015Google Scholar
  28. 28.
    C. Farhat, M. Lesoinne, P. LeTallec, K. Pierson, and D. Rixen, Int. J. Num. Methods Eng. 50, 1523 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    CUBIT Geometry and Meshing Toolkit, Version 13.2, https://cubit.sandia.gov/public/13.2/Cubit-13.2-announcement.html, 2012
  30. 30.
    Integrated computational materials engineering (ICME): Implementing icme in the aerospace, automotive, and maritime industries, The Minerals, Metals & Materials Society, http://www.tms.org/ICMEstudy, 2013
  31. 31.
    N. Provatas and K. Elder, Phase-Field Methods in Material Science and Engineering (Wiley, Weinheim, 2010)CrossRefGoogle Scholar
  32. 32.
    E. Holm and C. Battaile, JOM 53, 20 (2001)CrossRefGoogle Scholar
  33. 33.
    S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner, E. Webb, and X. Zhou, Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo, Technical Report SAND2009-6226, Sandia National Laboratories, 2009Google Scholar
  34. 34.
    E. Lazar, J. Mason, R. MacPherson, and D. Srolovitz, Acta Mater. 59, 6837 (2011)CrossRefGoogle Scholar
  35. 35.
    J. Arvo, Fast random rotation matrices, in Graphics Gems III, ed. by D. Kirk (Academic, New York, 1992)Google Scholar
  36. 36.
    D. Rowenhorst, A. Rollett, G. Rohrer, M. Groeber, M. Jackson, P. Konijnenberg, and M. Graef, Modell. Simul. Mater. Sci. Eng. 23, 083501 (2015)CrossRefGoogle Scholar
  37. 37.
    H. Ledbetter, Phys. Status Solidi A 85, 89 (1984)CrossRefGoogle Scholar
  38. 38.
    M. Miller and P. Dawson, J. Mech. Phys. Solids 45, 1781 (1997)CrossRefGoogle Scholar
  39. 39.
    C. Gerard, B. Bacroix, M. Bornert, G. Cailletaud, J. Crepin, and S. Leclercq, Comput. Mater. Sci. 45, 751 (2009)CrossRefGoogle Scholar
  40. 40.
    C. Gerard, G. Cailletaud, and B. Bacroix, Int. J. Plast. 42, 194 (2013)CrossRefGoogle Scholar
  41. 41.
    V. Kouznetsova, W. Brekelmans, and F. Baaijens, Comput. Mech. 27, 37 (2001)CrossRefGoogle Scholar
  42. 42.
    M. Geers, V. Kouznetsova, and W. Brekelmans, J. Comput. Appl. Math. 234, 2175 (2010)CrossRefGoogle Scholar
  43. 43.
    D. Cioranescu and P. Donato, An Introduction to Homogenization (Oxford University Press, New York, 1999)MATHGoogle Scholar
  44. 44.
    T. Tran, V. Monchiet, and G. Bonnet, Int. J. Solids Struct. 49, 783 (2012)CrossRefGoogle Scholar
  45. 45.
    V. Jikov, S. Kozlov, and O. Oleinik, Homogenization of Differential Operators and Integral Functionals (Springer, New York, 1994)CrossRefGoogle Scholar
  46. 46.
    A. Bensoussan, J. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures (American Mathematical Society, Providence, 2011)MATHGoogle Scholar
  47. 47.
    X. Yin, W. Chen, A. To, C. McVeigh, and W. Liu, Comput. Methods Appl. Mech. Eng. 197, 3516 (2008)MathSciNetCrossRefGoogle Scholar
  48. 48.
    W. Drugan and J. Willis, J. Mech. Phys. Solids 44, 497 (1996)MathSciNetCrossRefGoogle Scholar
  49. 49.
    A. Gusev, J. Mech. Phys. Solids 45, 1449 (1997)CrossRefGoogle Scholar
  50. 50.
    M. Ostoja-Starzewski, Int. J. Solids Struct. 35, 2429 (1998)CrossRefGoogle Scholar
  51. 51.
    Z. Ren and Q. Zheng, J. Mech. Phys. Solids 50, 881 (2002)CrossRefGoogle Scholar
  52. 52.
    Z. Ren and Q. Zheng, Mech. Mater. 36, 1217 (2004)CrossRefGoogle Scholar
  53. 53.
    C. Huet, J. Mech. Phys. Solids 38, 813 (1990)MathSciNetCrossRefGoogle Scholar
  54. 54.
    S. Nemat-Nasser, Mech. Mater. 31, 493 (1999)CrossRefGoogle Scholar
  55. 55.
    G. Johnson and W. Cook, A constitutive model and data for metals subjected to large strains, high strain rates, and high temperatures. 7th International Symposium on Ballistics, (The Hague, 1983), pp. 541–547.Google Scholar
  56. 56.
    D. Bammann, M. Chiesa, and G. Johnson, A state variable model for temperature and strain rate dependent metals, in Constitutive Laws: Experiments and Numerical Implementation, ed. A. Rajendran and R. Batra (The Hague, 1995), pp. 84Google Scholar
  57. 57.
    B. Scherzinger, Sandia National Laboratories, Albuquerque, NM, unpublished research (2015)Google Scholar
  58. 58.
    H. Dumontet, ESAIM Math. Modell. Numer. Anal. 20, 265 (1987)MathSciNetGoogle Scholar
  59. 59.
    J. Auriault and G. Bonnet, Int. J. Eng. Sci. 25, 307 (1987)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2016

Authors and Affiliations

  1. 1.Engineering Sciences CenterSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Materials Science and Engineering CenterSandia National LaboratoriesAlbuquerqueUSA
  3. 3.Computing Research CenterSandia National LaboratoriesAlbuquerqueUSA
  4. 4.General Motors Proving GroundGeneral MotorsMilfordUSA

Personalised recommendations