Advertisement

JOM

, Volume 68, Issue 4, pp 1134–1142 | Cite as

Spark Plasma Sintering of Load-Bearing Iron–Carbon Nanotube-Tricalcium Phosphate CerMets for Orthopaedic Applications

  • Edgar B. Montufar
  • Miroslava Horynová
  • Mariano Casas-Luna
  • Sebastián Diaz-de-la-Torre
  • Ladislav Celko
  • Lenka Klakurková
  • Zdenek Spotz
  • Guillermo Diéguez-Trejo
  • Zdenka Fohlerová
  • Karel Dvorak
  • Tomáš Zikmund
  • Jozef Kaiser
Article

Abstract

Recently, ceramic–metallic composite materials (CerMets) have been investigated for orthopaedic applications with promising results. This first generation of bio-CerMets combine the bioactivity of hydroxyapatite with the mechanical stability of titanium to fabricate bioactive, tough and biomechanically more biocompatible osteosynthetic devices. Nonetheless, these first CerMets are not biodegradable materials and a second surgery is required to remove the implant after bone healing. The present work aims to develop the next generation bio-CerMets, which are potential biodegradable materials. The process to produce the new biodegradable CerMet consisted of mixing powder of soluble and osteoconductive alpha tricalcium phosphate with biocompatible and biodegradable iron with consolidation through spark plasma sintering (SPS). The microstructure, composition and mechanical strength of the new CerMet were studied by metallography, x-ray diffraction and diametral tensile strength tests, respectively. The results show that SPS produces CerMet with higher mechanical performance (120 MPa) than the ceramic component alone (29 MPa) and similar mechanical strength to the pure metallic component (129 MPa). Nonetheless, although a short sintering time (10 min) was used, partial transformation of the alpha tricalcium phosphate into its allotropic and slightly less soluble beta phase was observed. Cell adhesion tests show that osteoblasts are able to attach to the CerMet surface, presenting spread morphology regardless of the component of the material with which they are in contact. However, the degradation process restricted to the small volume of the cell culture well quickly reduces the osteoblast viability.

Keywords

Carbon Nanotubes Spark Plasma Sinter Iron Powder Tricalcium Phosphate Beta Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support provided in the frame of the Project “CEITEC—Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) by European Regional Development Fund. Part of the work was carried out with the support of core facilities of research infrastructure CEITEC Nano of CEITEC-Brno University of Technology. SDT acknowledges to Conacyt-SNI (P. 1777000). Special thanks to Dr. M. Rampichová from Czech Technical University in Prague for supplying the cells for this work.

References

  1. 1.
    P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, Int. J. Refract. Met. Hard Mater. 13, 343 (1995).CrossRefGoogle Scholar
  2. 2.
    A. Rajabi, M.J. Ghazali, and A.R. Daud, Mater. Des. 67, 95 (2015).CrossRefGoogle Scholar
  3. 3.
    A. Arifin, A.B. Sulong, N. Muhamad, J. Syarif, and M.I. Ramli, Mater. Des. 55, 165 (2014).CrossRefGoogle Scholar
  4. 4.
    C. Chu, J. Zhu, Z. Yin, and S. Wang, J. Mater. Sci. Eng. A 271, 95 (1999).CrossRefGoogle Scholar
  5. 5.
    C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Eng. A 429, 18 (2006).CrossRefGoogle Scholar
  6. 6.
    C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Mater. Med. 15, 665 (2004).CrossRefGoogle Scholar
  7. 7.
    C. Ning and Y. Zhou, Acta Biomater. 4, 1944 (2008).CrossRefGoogle Scholar
  8. 8.
    A. Kumar, K. Biswas, and B. Basu, Acta Mater. 61, 5198 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Karrholm and R. Razaznejad, Clin Orthop Relat R 466, 380 (2008).CrossRefGoogle Scholar
  10. 10.
    C.Q. Ning and Y. Zhou, Biomaterials 23, 2909 (2002).CrossRefGoogle Scholar
  11. 11.
    P.P. Schmittenbecher, Eur. J. Trauma Emerg. Surg. 39, 345 (2013).CrossRefGoogle Scholar
  12. 12.
    R.Z. LeGeros and J.P. LeGeros, Key Eng. Mater. 240–242, 3 (2003).CrossRefGoogle Scholar
  13. 13.
    J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier, 1994), pp. 1–62.Google Scholar
  14. 14.
    J.H. Shepherd and S.M. Best, JOM 63, 83 (2011).CrossRefGoogle Scholar
  15. 15.
    Y.F. Zheng, X.N. Gu, and F. Witte, Mater. Sci. Eng. R 77, 1 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Francis, Y. Yang, S. Virtanen, and A.R. Boccaccini, J. Mater. Sci. Mater. Med. 26, 138 (2015).CrossRefGoogle Scholar
  17. 17.
    N.T. Kirkland and N. Birbilis, Magnesium Biomaterials: Design, Testing, and Best Practice, 1st ed. (Switzerland: Springer, 2014), pp. 73–94.Google Scholar
  18. 18.
    S. Jafari, S.E. Harandi, and R.K.S. Raman, JOM 67, 1143 (2015).CrossRefGoogle Scholar
  19. 19.
    R. Orrú, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Mater. Sci. Eng. R 63, 127 (2009).CrossRefGoogle Scholar
  20. 20.
    L. Wang, J. Zhang, and W. Jiang, Int. J. Refract. Met. Hard Mater. 39, 103 (2013).CrossRefGoogle Scholar
  21. 21.
    M. Mulukutla, A. Singh, and S.P. Harimkar, JOM 62, 65 (2010).CrossRefGoogle Scholar
  22. 22.
    J. Cheng and Y.F. Zheng, J. Biomed. Mater. Res. Part B 101, 485 (2013).CrossRefGoogle Scholar
  23. 23.
    ASTM E407-07. Standard Practice for Microetching Metals and Alloys, (ASTM International, West Conshohocken, PA, 2010).Google Scholar
  24. 24.
    R.G. Carrodeguas and S. De Aza, Acta Biomater. 7, 3536 (2011).CrossRefGoogle Scholar
  25. 25.
    L.A. Santos, L.C. Oliveira, E.C.S. Rigo, R.G. Carrodeguas, A.O. Boschi, and A.C.F. Arruda, Bone 25, 99S (1999).CrossRefGoogle Scholar
  26. 26.
    E.B. Montufar, Y. Maazouz, and M.P. Ginebra, Acta Biomater. 9, 6188 (2013).CrossRefGoogle Scholar
  27. 27.
    M.P. Ginebra, E. Fernandez, F.C.M. Driessens, and J.A. Planell, J. Am. Ceram. Soc. 82, 2808 (1999).CrossRefGoogle Scholar
  28. 28.
    ASTM F1088-04a. Standard Specification for Beta-Tricalcium Phosphate for Surgical Implantation, (ASTM International, West Conshohocken, PA, 2010).Google Scholar
  29. 29.
    M.F. Ulum, A. Arafat, D. Noviana, A.H. Yusop, A.K. Nasution, M.R. Abdul Kadir, and H. Hermawan, Mater. Sci. Eng. C 36, 336 (2014).CrossRefGoogle Scholar
  30. 30.
    A. Reindl, R. Borowsky, S.B. Hein, J. Geis-Gerstorfer, P. Imgrund, and F. Petzoldt, J. Mater. Sci. 49, 8234 (2014).CrossRefGoogle Scholar
  31. 31.
    M. Bohner, Injury 31, D37 (2000).CrossRefGoogle Scholar
  32. 32.
    R. Berenbaum and I. Brodie, Br. J. Appl. Phys. 10, 281 (1959).CrossRefGoogle Scholar
  33. 33.
    A.T. Procopio, A. Zavaliangos, and J.C. Cunningham, J. Mater. Sci. 38, 3629 (2003).CrossRefGoogle Scholar
  34. 34.
    C. Chu, X. Xue, J. Zhu, and Z. Yin, J. Mater. Sci. Mater. Med. 17, 245 (2006).CrossRefGoogle Scholar
  35. 35.
    E. Bresciani, T. Barata, T.C. Fagundes, A. Adachi, M. Martins, and M.F.L. Navarro, J. Appl. Oral Sci. 12, 344 (2004).CrossRefGoogle Scholar
  36. 36.
    S.R. Bakshi, D. Lahiri, and A. Argawal, Int. Mater. Rev. 55, 41 (2010).CrossRefGoogle Scholar
  37. 37.
    H. Zhou, J. Wei, X. Wu, J. Shi, C. Liu, J. Jia, C. Dai, and Q.I. Gan, J. Mater. Sci. Mater. Med. 21, 2175 (2010).CrossRefGoogle Scholar
  38. 38.
    J.P. Marie, Bone 46, 571 (2010).CrossRefGoogle Scholar
  39. 39.
    N.J. Hallab, C. Vermes, C. Messina, K.A. Roebuck, T.T. Glant, and J.J. Jacobs, J. Biomed. Mater. Res. 60, 420 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Edgar B. Montufar
    • 1
  • Miroslava Horynová
    • 1
  • Mariano Casas-Luna
    • 1
  • Sebastián Diaz-de-la-Torre
    • 2
  • Ladislav Celko
    • 1
  • Lenka Klakurková
    • 1
  • Zdenek Spotz
    • 1
  • Guillermo Diéguez-Trejo
    • 2
  • Zdenka Fohlerová
    • 1
  • Karel Dvorak
    • 3
  • Tomáš Zikmund
    • 1
  • Jozef Kaiser
    • 1
  1. 1.Central European Institute of TechnologyBrno University of Technology (CEITEC - BUT)BrnoCzech Republic
  2. 2.Instituto Politécnico NacionalCentro de Investigación e Innovación Tecnológica (CIITEC)Mexico DFMexico
  3. 3.Faculty of Civil EngineeringBrno University of TechnologyBrnoCzech Republic

Personalised recommendations