, Volume 68, Issue 4, pp 1204–1208 | Cite as

Monitoring Biodegradation of Magnesium Implants with Sensors

  • Daoli Zhao
  • Tingting Wang
  • Xuefei Guo
  • Julia Kuhlmann
  • Amos Doepke
  • Zhongyun Dong
  • Vesselin N. Shanov
  • William R. Heineman


Magnesium and its alloys exhibit properties such as high strength, light weight, and in vivo corrosion that make them promising candidates for the development of biodegradable metallic implant materials for bone repair, stents and other medical applications. Sensors have been used to monitor the corrosion of magnesium and its alloys by measuring the concentrations of the following corrosion products: magnesium ions, hydroxyl ions and hydrogen gas. The corrosion characterization system with home-made capillary pH and Mg2+ microsensors has been developed for real-time detection of magnesium corrosion in vitro. A hydrogen gas sensor was used to monitor the corrosion of magnesium by measuring the concentration of the hydrogen gas reaction product in vivo. The high permeability of hydrogen through skin allows transdermal monitoring of the biodegradation of a magnesium alloy implanted beneath the skin by detecting hydrogen gas at the skin surface. The sensor was used to map hydrogen concentration in the vicinity of an implanted magnesium alloy.


Magnesium Alloy Electrochemical Impedance Spectroscopy Simulated Body Fluid Immersion Test Potentiometric Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the National Science Foundation (NSF ERC 0812348) for financial support.


  1. 1.
    C.K. Seal, K. Vince, M.A. Hodgson, and I.O.P. Conf, IOP Conf. Ser. 4, 012011 (2009).CrossRefGoogle Scholar
  2. 2.
    E. Poinern, S. Brundavanam, and D. Fawcett, Am. J. Biomed. Eng. 2, 218 (2012).CrossRefGoogle Scholar
  3. 3.
    M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias, Biomaterials 27, 1728 (2006).CrossRefGoogle Scholar
  4. 4.
    P.R. Cha, H.S. Han, G. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, and H.K. Seok, Sci. Rep. 3, 2367 (2013).CrossRefGoogle Scholar
  5. 5.
    M. Razavi, M.H. Fathi, and M. Meratian, Mat. Sci. Eng. A 527, 6938 (2010).CrossRefGoogle Scholar
  6. 6.
    A. Feng and Y. Han, J. Alloy. Compd. 504, 585 (2010).CrossRefGoogle Scholar
  7. 7.
    N.L. Saris, E. Mervaala, H. Karppanen, J.A. Khawaja, and A. Lewenstam, Clin. Chim. Acta 294, 1 (2000).CrossRefGoogle Scholar
  8. 8.
    H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans, G. Schulze-Tanzil, C. Knabe, and M. Shakibaei, J. Biomed. Mater. Res. 62, 175 (2002).CrossRefGoogle Scholar
  9. 9.
    Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu, T. Uchida, T. Kubo, Y. Akagawa, Y. Hamada, J. Takahashi, and N. Matsuura, J. Biomed. Mater. Res. 62, 99 (2002).CrossRefGoogle Scholar
  10. 10.
    Y. Yun, Z. Dong, D. Yang, M.J. Schulz, V.N. Shanov, S. Yarmolenko, Z. Xu, P. Kumta, and C. Sfeir, Mat. Sci. Eng. C 29, 1814 (2009).CrossRefGoogle Scholar
  11. 11.
    N.Z. Abidin, D. Martin, and A. Atrens, Corros. Sci. 53, 862 (2011).CrossRefGoogle Scholar
  12. 12.
    G. Song, A. Atrens, and D. StJohn, Magnes. Technol. 2001, 255 (2001).Google Scholar
  13. 13.
    G. Song and S. Song, Adv. Eng. Mater. 9, 298 (2007).CrossRefGoogle Scholar
  14. 14.
    R. Willumeit, J. Fischer, F. Feyerabend, N. Hort, U. Bismayer, S. Heidrich, and B. Mihailova, Acta Biomater. 7, 2704 (2011).CrossRefGoogle Scholar
  15. 15.
    A. Yamamoto and S. Hiromoto, Mat. Sci. Eng. C 29, 1559 (2009).CrossRefGoogle Scholar
  16. 16.
    M.B. Kannan and R.K.S. Raman, Biomaterials 29, 2306 (2008).CrossRefGoogle Scholar
  17. 17.
    L. Yang, Y. Wei, L. Hou, and D. Zhang, Corros. Sci. 52, 345 (2010).CrossRefGoogle Scholar
  18. 18.
    J.E. Gray-Munro, C. Seguin, and M. Strong, J. Biomed. Mater. Res. A. 91A, 221 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Doepke, J. Kuhlmann, X. Guo, R.T. Voorhees, and W.R. Heineman, Acta Biomater. 9, 9211 (2013).CrossRefGoogle Scholar
  20. 20.
    X. Guo, T. Meyung, Y. Yun, V.N. Shanov, H.B. Halsall, and W.R. Heineman, Electroanalysis 24, 2045 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Hoche, W.R. Heineman, and F. Witte, Acta Biomater. 9, 8714 (2013).CrossRefGoogle Scholar
  22. 22.
    W.R. Heineman, T. Wang, D. Zhao, J. Kuhlmann, Z. Dong, V.N. Shanov, D. Chou, D. Hong, P.N. Kumta, and Y. Yun, Pittcon 2015 (New Orleans, Louisiana, unpublished research, 2015).Google Scholar
  23. 23.
    T. Wang, D. Zhao, Z. Dong, V.N. Shanov, Y. Yun, P.N. Kumta, and W.R. Heineman, Pittcon 2015 (New Orleans, Louisiana, unpublished research, 2015).Google Scholar
  24. 24.
    W.R. Heineman, T. Wang, D. Zhao, and Z. Dong, 250th American Chemical Society National Meeting (Boston, Massachusetts, unpublished research, 2015).Google Scholar
  25. 25.
    W.R. Heineman, J. Kuhlmann, X. Guo, A. Doepke, T. Wang, K. Ojo, R.T. Voorhees, S.K. Pixley, Z. Dong, V.N. Shanov, and F. Witte, Pittcon 2014 (Chicago, Illinois, unpublished research, 2014).Google Scholar
  26. 26.
    Y. Song, D. Shan, R. Chen, F. Zhang, and E. Han, Mat. Sci. Eng. C 29, 1039 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Daoli Zhao
    • 1
  • Tingting Wang
    • 1
  • Xuefei Guo
    • 1
  • Julia Kuhlmann
    • 1
  • Amos Doepke
    • 1
  • Zhongyun Dong
    • 2
  • Vesselin N. Shanov
    • 3
  • William R. Heineman
    • 1
  1. 1.Department of ChemistryUniversity of CincinnatiCincinnatiUSA
  2. 2.Department of Internal MedicineUniversity of CincinnatiCincinnatiUSA
  3. 3.Department of Biomedical, Chemical and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations