, Volume 68, Issue 4, pp 1198–1203 | Cite as

Computer Simulation of the Mechanical Behaviour of Implanted Biodegradable Stents in a Remodelling Artery

  • Enda L. BolandEmail author
  • James A. Grogan
  • Claire Conway
  • Peter E. McHugh


Coronary stents have revolutionised the treatment of coronary artery disease. While coronary artery stenting is now relatively mature, significant scientific and technological challenges still remain. One of the most fertile technological growth areas is biodegradable stents; here, there is the possibility to generate stents that will break down in the body once the initial necessary scaffolding period is past (6–12 months) (Grogan et al. in Acta Biomater 7:3523, 2011) and when the artery has remodelled (including the formation of neo-intima). A stent angioplasty computational test-bed has been developed by the authors, based on the Abaqus software (DS-SIMULIA, USA), capable of simulating stent tracking, balloon expansion, recoil and in vivo loading in a atherosclerotic artery model. Additionally, a surface corrosion model to simulate uniform and pitting corrosion of biodegradable stents and a representation of the active response of the arterial tissue following stent implantation, i.e. neointimal remodelling, has been developed. The arterial neointimal remodelling simulations with biodegradable stent corrosion demonstrate that the development of new arterial tissue around the stent struts has a substantial effect on the mechanical behaviour of degrading stents.


Transcatheter Aortic Valve Implantation Corrosion Model Arterial Tissue Uniform Corrosion Coronary Artery Stenting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge funding from the Irish Research Council for Science, Engineering and Technology and the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support.


  1. 1.
    J.A. Grogan, B.J. O’Brien, S.B. Leen, and P.E. McHugh, Acta Biomater. 7, 3523 (2011).CrossRefGoogle Scholar
  2. 2.
    J.A. Grogan, S.B. Leen, and P.E. McHugh, Biomaterials 34, 8049 (2013).CrossRefGoogle Scholar
  3. 3.
    N. Patel and A.P. Banning, Heart 99, 1236 (2013).CrossRefGoogle Scholar
  4. 4.
    M. Haude, R. Erbel, P. Erne, S. Verheye, H. Degen, D. Bose, P. Vermeersch, I. Wijnbergen, N. Weissman, F. Prati, R. Waksman, and J. Koolen, Lancet 9, 836 (2013).CrossRefGoogle Scholar
  5. 5.
    R.N. Shirazi, F. Aldabbagh, A. Erxleben, Y. Rochev, and P. McHugh, Acta Biomater. 10, 4695 (2014).CrossRefGoogle Scholar
  6. 6.
    C. Conway, F. Sharif, J.P. McGarry, and P.E. McHugh, Cardiovasc. Eng. Technol. 3, 374 (2012).CrossRefGoogle Scholar
  7. 7.
    C. Conway, J.P. McGarry, and P.E. McHugh, Ann. Biomed. Eng. 42, 2425 (2014).CrossRefGoogle Scholar
  8. 8.
    C. Lally and P.J. Prendergast, Mechanics of Biological Tissue, ed. G. Holzapfel and R. Ogden (Heidelberg: Springer, 2006), p. 255.CrossRefGoogle Scholar
  9. 9.
    R. Waksman, F. Prati, N. Bruining, M. Haude, D. Böse, H. Kitabata, P. Erne, S. Verheye, H. Degen, P. Vermeersch, L. Di Vito, J. Koolen, and R. Erbel, Circ. Cardiovasc. Interv. 6, 644 (2013).CrossRefGoogle Scholar
  10. 10.
    H. Kitabata, R. Waksman, and B. Warnack, Cardiovasc. Revasc. Med. 15, 109 (2014).CrossRefGoogle Scholar
  11. 11.
    E.L. Boland, R. Shine, N. Kelly, C.A. Sweeney, and P. E. McHugh, Ann. Biomed. Eng. (2015). doi: 10.1007/s10439-015-1413-5.Google Scholar
  12. 12.
    G.A. Holzapfel, G. Sommer, C.T. Gasser, and P. Regitnig, Am. J. Physiol. Heart Circ. Physiol. 289, H2048 (2005).CrossRefGoogle Scholar
  13. 13.
    F. Gervaso, C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca, J. Biomech. 41, 1206 (2008).CrossRefGoogle Scholar
  14. 14.
    M.T. Walsh, E.M. Cunnane, J.J. Mulvihill, A.C. Akyildiz, F.J.H. Gijsen, and G.A. Holzapfel, J. Biomech. 47, 793 (2014).CrossRefGoogle Scholar
  15. 15.
    M. Maeng, L.O. Jensen, E. Falk, H.R. Andersen, and L. Thuesen, Heart 95, 241 (2009).CrossRefGoogle Scholar
  16. 16.
    J.E. Schaffer, Ph.D. thesis, Purdue University, Indiana, 2012.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Enda L. Boland
    • 1
    Email author
  • James A. Grogan
    • 1
  • Claire Conway
    • 1
  • Peter E. McHugh
    • 1
  1. 1.Biomechanics Research Centre, Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland

Personalised recommendations