Advertisement

JOM

, Volume 68, Issue 3, pp 724–734 | Cite as

Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock

Article

Abstract

Laser-based additive manufacturing (AM) of metals using powder feedstock can be accomplished via two broadly defined technologies: directed energy deposition (DED) and powder bed fusion (PBF). In these processes, metallic powder is delivered to a location and locally melted with a laser heat source. Upon deposition, the material undergoes a rapid cooling and solidification, and as subsequent layers are added to the component, the material within the component is subjected to rapid thermal cycles. In order to adopt AM for the building of structural components, a thorough understanding of the relationships among the complex thermal cycles seen in AM, the unique heterogeneous and anisotropic microstructure, and the mechanical properties must be developed. Researchers have fabricated components by both DED and PBF from the widely used titanium alloy Ti-6Al-4V and studied the resultant microstructure and mechanical properties. This review article discusses the progress to date on investigating the as-deposited and heat-treated microstructures and mechanical properties of Ti-6Al-4V structures made by powder-based laser AM using DED and PBF.

Notes

Acknowledgement

The authors gratefully acknowledge the financial support of the National Science Foundation through Award Number CMMI-1402978. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    G. Lutjering and J.C. Williams, Titanium, 2nd ed. (Berlin: Springer, 2007).Google Scholar
  2. 2.
    M.J. Donachie, Titanium: A Technical Guide, 2nd ed. (Materials Park: ASM International, 2000).Google Scholar
  3. 3.
    ASTM F2921-11, Standard Terminology for Additive Manufacturing—Coordinate Systems and Test (ASTM International, West Conshohocken, 2011).Google Scholar
  4. 4.
    E.W. Kreutz, G. Backes, A. Gasser, and K. Wissenbach, Appl. Surf. Sci. 86, 310 (1995).CrossRefGoogle Scholar
  5. 5.
    G.K. Lewis, Mater. Techol. 10, 3 (1995).CrossRefGoogle Scholar
  6. 6.
    M.L. Griffith, D.M. Keicher, C.L. Atwood, J.A. Romero, J.E. Smugeresky, L.D. Harwell, and D. L. Greene, Proceedings of 7th Solid Freeform Fabrication Symposium (Austin, August 12–14, 1996), p. 53.Google Scholar
  7. 7.
    D.M. Keicher and W.D. Miller, Met. Powder Rep. 53, 26 (1998).Google Scholar
  8. 8.
    N.P. Karapatis, J.P.S. Van Griethuysen, and R. Glardon, Rapid Prototyp. J. 4, 77 (1998).CrossRefGoogle Scholar
  9. 9.
    W. Carter and M. Jones, Proceedings of Solid Freeform Fabrication Symposium (1993), p. 51.Google Scholar
  10. 10.
    M. Agarwala, D. Bourell, J. Beaman, H. Marcus, and J. Barlow, Rapid Prototyp. J. 1, 26 (1995).CrossRefGoogle Scholar
  11. 11.
    S. Das, M. Wohlert, J.J. Beaman, and D.L. Bourell, Mater. Des. 20, 115 (1999).CrossRefGoogle Scholar
  12. 12.
    F. Abe, K. Osakada, M. Shiomi, K. Uematsu, and M. Matsumoto, J. Mater. Process. Technol. 111, 210 (2001).CrossRefGoogle Scholar
  13. 13.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
  14. 14.
    P.A. Kobryn and S.L. Semiatin, Proceedings of 12th Solid Freeform Fabrication Symposium (Austin, 2001), p. 179.Google Scholar
  15. 15.
    X. Wu, J. Liang, J. Mei, C. Mitchell, P.S. Goodwin, and W. Voice, Mater. Des. 25, 137 (2004).CrossRefGoogle Scholar
  16. 16.
    L. Qian, J. Mei, J. Liang, and X. Wu, Mater. Sci. Technol. 21, 597 (2005).CrossRefGoogle Scholar
  17. 17.
    B. Yao, X.-L. Ma, F. Lin, and W.-J. Ge, Rare Met. 34, 445 (2015).CrossRefGoogle Scholar
  18. 18.
    G.P. Dinda, L. Song, and J. Mazumder, Metall. Mater. Trans. A 39, 2914 (2008).CrossRefGoogle Scholar
  19. 19.
    B.E. Carroll, T.A. Palmer, and A.M. Beese, Acta Mater. 87, 309 (2015).CrossRefGoogle Scholar
  20. 20.
    L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, and J.P. Kruth, Acta Mater. 58, 3303 (2010).CrossRefGoogle Scholar
  21. 21.
    P. Edwards and M. Ramulu, Mater. Sci. Eng. A 598, 327 (2014).CrossRefGoogle Scholar
  22. 22.
    A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire, and J. Lecomte-Beckers, Powder Metall. 57, 184 (2014).CrossRefGoogle Scholar
  23. 23.
    C. Qiu, N.J.E. Adkins, and M.M. Attallah, Mater. Sci. Eng. A 578, 230 (2013).CrossRefGoogle Scholar
  24. 24.
    H.K. Rafi, N.V. Karthik, H. Gong, T.L. Starr, and B.E. Stucker, J. Mater. Eng. Perform. 22, 3872 (2013).CrossRefGoogle Scholar
  25. 25.
    L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Höges, and K. Wissenbach, Rapid Prototyp. J. 16, 450 (2010).CrossRefGoogle Scholar
  26. 26.
    D.A. Hollander, M. Von Walter, T. Wirtz, R. Sellei, B. Schmidt-Rohlfing, O. Paar, and H.J. Erli, Biomaterials 27, 955 (2006).CrossRefGoogle Scholar
  27. 27.
    W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, and M. Qian, Acta Mater. 85, 74 (2015).CrossRefGoogle Scholar
  28. 28.
    W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt, and M. Qian, JOM 67, 1 (2015).CrossRefGoogle Scholar
  29. 29.
    B. Vandenbroucke and J.-P. Kruth, Rapid Prototyp. J. 13, 196 (2007).CrossRefGoogle Scholar
  30. 30.
    M. Koike, P. Greer, K. Owen, G. Lilly, L.E. Murr, S.M. Gaytan, E. Martinez, and T. Okabe, Materials (Basel). 4, 1776 (2011).CrossRefGoogle Scholar
  31. 31.
    L.E. Murr, S.A. Quinones, S.M. Gaytan, M.I. Lopez, A. Rodela, E.Y. Martinez, D.H. Hernandez, E. Martinez, F. Medina, and R.B. Wicker, J. Mech. Behav. Biomed. Mater. 2, 20 (2009).CrossRefGoogle Scholar
  32. 32.
    S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H.A. Richard, and H.J. Maier, Int. J. Fatigue 48, 300 (2013).CrossRefGoogle Scholar
  33. 33.
    G. Kasperovich and J. Hausmann, J. Mater. Process. Technol. 220, 202 (2015).CrossRefGoogle Scholar
  34. 34.
    I. Yadroitsev, P. Krakhmalev, and I. Yadroitsava, J. Alloys Compd. 583, 404 (2014).CrossRefGoogle Scholar
  35. 35.
    M. Simonelli, Y.Y. Tse, and C. Tuck, J. Phys. 371, 1 (2012).Google Scholar
  36. 36.
    H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, Addit. Manuf. 1–4, 87 (2014).CrossRefGoogle Scholar
  37. 37.
    S.M. Kelly and S.L. Kampe, Metall. Mater. Trans. A 35, 1861 (2004).CrossRefGoogle Scholar
  38. 38.
    S.M. Kelly and S.L. Kampe, Metall. Mater. Trans. A 35, 1869 (2004).CrossRefGoogle Scholar
  39. 39.
    S. Zhang, X. Lin, J. Chen, and W. Huang, Rare Met. 28, 537 (2009).CrossRefGoogle Scholar
  40. 40.
    P.A. Kobryn, E.H. Moore, and S.L. Semiatin, Scr. Mater. 43, 299 (2000).CrossRefGoogle Scholar
  41. 41.
    E. Amsterdam and G. Kool, 25th ICAF (International Committee on Aeronautical Fatigue) Symposium (Rotterdam, May 27–29, 2009), pp. 1261–1274.Google Scholar
  42. 42.
    X.D. Zhang, H. Zhang, R.J. Grylls, T.J. Lienert, C. Brice, H.L. Fraser, D.M. Keicher, and M.E. Schlienger, J. Adv. Mater. 33, 17 (2001).Google Scholar
  43. 43.
    D. Clark, M.T. Whittaker, and M.R. Bache, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 43, 388 (2012).CrossRefGoogle Scholar
  44. 44.
    Y. Zhai, H. Galarraga, and D.A. Lados, Procedia Eng. 114, 658 (2015).CrossRefGoogle Scholar
  45. 45.
    R. Cottam and M. Brandt, Phys. Procedia 12, 323 (2011).CrossRefGoogle Scholar
  46. 46.
    F.G. Arcella and F.H. Froes, JOM 52, 28 (2000).CrossRefGoogle Scholar
  47. 47.
    T. Vilaro, C. Colin, and J.D. Bartout, Metall. Mater. Trans. A 42, 3190 (2011).CrossRefGoogle Scholar
  48. 48.
    B. Vrancken, L. Thijs, J.-P. Kruth, and J. Van Humbeeck, J. Alloys Compd. 541, 177 (2012).CrossRefGoogle Scholar
  49. 49.
    M.K.E. Ramosoeu, G. Booysen, T.N. Ngonda, and H.K. Chikwanda, Mater. Sci. Technol. 2, 1460 (2011).Google Scholar
  50. 50.
    C. Qiu, G.A. Ravi, C. Dance, A. Ranson, S. Dilworth, and M.M. Attallah, J. Alloys Compd. 629, 351 (2015).CrossRefGoogle Scholar
  51. 51.
    G.P. Dinda, A.K. Dasgupta, and J. Mazumder, Mater. Sci. Eng. A 509, 98 (2009).CrossRefGoogle Scholar
  52. 52.
    J. Alcisto, A. Enriquez, H. Garcia, S. Hinkson, T. Steelman, E. Silverman, P. Valdovino, H. Gigerenzer, J. Foyos, J. Ogren, J. Dorey, K. Karg, T. McDonald, and O.S. Es-Said, J. Mater. Eng. Perform. 20, 203 (2011).CrossRefGoogle Scholar
  53. 53.
    S. Leuders, T. Lieneke, S. Lammers, T. Tröster, and T. Niendorf, J. Mater. Res. 29, 1911 (2014).CrossRefGoogle Scholar
  54. 54.
    R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie, Metall. Mater. Trans. A 33, 899 (2002).CrossRefGoogle Scholar
  55. 55.
    D.N. Mohamed, T. Robert, and B. Thorsten, 1019, 248 (2014).Google Scholar
  56. 56.
    L. Bian, S.M. Thompson, and N. Shamsaei, JOM 67, 629 (2015).CrossRefGoogle Scholar
  57. 57.
    J. Yu, M. Rombouts, G. Maes, and F. Motmans, Phys. Procedia 39, 416 (2012).CrossRefGoogle Scholar
  58. 58.
  59. 59.
    M.K.E. Ramosoeu, G. Booysen, T.N. Ngonda, and C. Bloemfontein, Materials Science and Technology Conference (Columbus, October 16–20, 2011).Google Scholar
  60. 60.
    EOS, Material Data Sheet EOS Titanium Ti64 (2011).Google Scholar
  61. 61.
    M.L. Griffith, M.T. Ensz, J.D. Puskar, C.V. Robino, J.A. Brooks, J.A. Philliber, J.E. Smugeresky, and W.H. Hofmeister, MRS Proceeding 625 (2000).Google Scholar
  62. 62.
    G.K. Lewis and E. Schlienger, Mater. Des. 21, 417 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations