JOM

, Volume 67, Issue 12, pp 2802–2809 | Cite as

Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloys

  • B. C. Hornbuckle
  • T. Rojhirunsakool
  • M. Rajagopalan
  • T. Alam
  • G. P. Purja Pun
  • R. Banerjee
  • K. N. Solanki
  • Y. Mishin
  • L. J. Kecskes
  • K. A. Darling
Article

Abstract

The immiscible Cu-Ta system has garnered recent interest due to observations of high strength and thermal stability attributed to the formation of Ta-enriched particles. This work investigated a metastable Cu-1 at.% Ta solid solution produced via mechanical alloying followed by subsequent consolidation into a bulk specimen using equal channel angular extrusion at 973 K (700°C). Microstructural characterization revealed a decreased number density of Ta clusters, but with an equivalent particle size compared to a previously studied Cu-10 at.% Ta alloy. Molecular dynamic stimulations were performed to understand the thermal evolution of the Ta clusters. The cluster size distributions generated from the simulations were in good agreement with the experimental microstructure.

Notes

Acknowledgements

M. Rajagopalan and K. N. Solanki are grateful for the financial support for this work from the Army Research Laboratory award number W911NF-15-2-0038 and would also like to thank the LeRoy Eyring Center for Solid State Science at Arizona State University. G. P. Purja Pun and Y. Mishin were supported by the U.S. Army Research Office under contract number W911NF-15-1-007.

References

  1. 1.
    A.J. Detor and C.A. Schuh, Acta Mater. 55, 371 (2007).CrossRefGoogle Scholar
  2. 2.
    A.J. Detor and C.A. Schuh, Acta Mater. 55, 4221 (2007).CrossRefGoogle Scholar
  3. 3.
    A.J. Detor, J.K. Miller, and C.A. Schuh, Philos. Mag. 86, 4459 (2006).CrossRefGoogle Scholar
  4. 4.
    K.A. Darling, R.N. Chan, P.Z. Wong, J.E. Semones, R.O. Scattergood, and C.C. Koch, Scripta Mater. 59, 530 (2008).CrossRefGoogle Scholar
  5. 5.
    K.A. Darling, B.K. VanLeeuwen, C.C. Koch, R.O. Scattergood, Mater. Sci. Eng. A 527, 357 (2010).CrossRefGoogle Scholar
  6. 6.
    K.A. Darling, B.K. VanLeeuwen, J.E. Semones, C.C. Koch, R.O. Scattergood, L.J. Kecskes, and S.N. Mathaudhu, Mater. Sci. Eng. A 528, 4365 (2011).CrossRefGoogle Scholar
  7. 7.
    J.M. Dake and C.E. Krill III, Scripta Mater. 66, 390 (2012).CrossRefGoogle Scholar
  8. 8.
    R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia, Metall. Mater. Trans. A 29, 2469 (1998).CrossRefGoogle Scholar
  9. 9.
    L. Shaw, H. Luo, J. Villegas, and D. Miracle, Acta Mater. 51, 2647 (2003).CrossRefGoogle Scholar
  10. 10.
    A.M. El-Sherik, D. Boylan, U. Erb, G. Palumbo, and K.T. Aust, Mater. Trans. A 238, 727 (1992).Google Scholar
  11. 11.
    K. Boylan, D. Ostrander, U. Erb, G. Palumbo, and K.T. Aust, Scripta Metall. Mater. 25, 2711 (1991).CrossRefGoogle Scholar
  12. 12.
    A. Michels, C.E. Krill, H. Eharhardt, R. Birringer, and D.T. Wu, Acta Mater. 47, 2143 (1999).CrossRefGoogle Scholar
  13. 13.
    P. Knauth, A. Charai, and P. Gas, Scripta Metall. Mater. 28, 325 (1993).CrossRefGoogle Scholar
  14. 14.
    C.C. Koch, R.O. Scattergood, K.A. Darling, and J.E. Semones, J. Mater. Sci. 43, 7264 (2008).CrossRefGoogle Scholar
  15. 15.
    K.A. Darling, M.A. Tschopp, B.K. VanLeeuwen, M.A. Atwater, and Z.K. Liu, Comp. Mater. Sci. 84, 255 (2014).CrossRefGoogle Scholar
  16. 16.
    T. Chookajorn, H.A. Murdoch, and C.A. Schuh, Science 337, 951 (2012).CrossRefGoogle Scholar
  17. 17.
    M. Saber, H. Kotan, C.C. Koch, and R.O. Scattergood, J. Appl. Phys. 113, 063515 (2013).CrossRefGoogle Scholar
  18. 18.
    Z. Chen, F. Liu, H.F. Wang, W. Yang, G.C. Yang, and Y.H. Zhou, Acta Mater. 57, 1466 (2009).CrossRefGoogle Scholar
  19. 19.
    J. Li, J. Wang, and G. Yang, Scripta Mater. 60, 945 (2009).CrossRefGoogle Scholar
  20. 20.
    H.A. Murdoch and C.A. Schuh, Acta Mater. 61, 2121 (2013).CrossRefGoogle Scholar
  21. 21.
    C.C. Koch, R.O. Scattergood, M. Saber, and H. Kotan, J. Mater. Res. 28, 1785 (2013).CrossRefGoogle Scholar
  22. 22.
    K.A. Darling, E.L. Huskins, B.E. Schuster, Q. Wei, and L.J. Kecskes, Mat. Sci. Eng. A. 638, 322 (2015).CrossRefGoogle Scholar
  23. 23.
    T. Frolov, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 60, 2158 (2012).CrossRefGoogle Scholar
  24. 24.
    K.A. Darling, M.A. Tschopp, R.K. Guduru, W.H. Yin, Q. Wei, and L.J. Kecskes, Acta Mater. 76, 168 (2014).CrossRefGoogle Scholar
  25. 25.
    K.A. Darling, A.J. Roberts, Y. Mishin, S.N. Mathaudhu, and L.J. Kecskes, J. Alloys Compd. 573, 142 (2013).CrossRefGoogle Scholar
  26. 26.
    T. Rojhirunsakool, K.A. Darling, M.A. Tschopp, G.P. Purja Pun, Y. Mishin, R. Banerjee, and L.J. Kecskes. MRS Commun. 5, 333 (2015).CrossRefGoogle Scholar
  27. 27.
    C.M. Müller, S. Parviainen, F. Djurabekova, K. Nordlund, and R. Spolenak, Acta Mater. 82, 51 (2015).CrossRefGoogle Scholar
  28. 28.
    C.M. Müller, A.S. Sologubenko, S.S.A. Gerstl, and R. Spolenak, Acta Mater. 89, 181 (2015).CrossRefGoogle Scholar
  29. 29.
    G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin, Acta Mater. 100, 377 (2015).CrossRefGoogle Scholar
  30. 30.
    V.M. Segal, Mater. Sci. Eng. A 197, 157 (1995).CrossRefGoogle Scholar
  31. 31.
    M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, and J. Mater, Sci. 36, 2835 (2001).Google Scholar
  32. 32.
    V.M. Segal, Mater. Sci. Eng. A 271, 322 (1999).CrossRefGoogle Scholar
  33. 33.
    R.Z. Valiev and T.G. Langdon, Prog. Mater Sci. 51, 881 (2006).CrossRefGoogle Scholar
  34. 34.
    Y.T. Zhu and T.C. Lowe, Mater. Sci. Eng. A 291, 46 (2000).CrossRefGoogle Scholar
  35. 35.
    M.K. Miller, Atom Probe Tomography (New York: Kluwer Academic/Plenum Publishers, 2000). ISBN-13: 9780306464157; ISBN-10: 0306464152.Google Scholar
  36. 36.
    M.K. Miller and E.A. Kenik, Microsc. Microanal. 10, 336 (2004).CrossRefGoogle Scholar
  37. 37.
    R.P. Kolli and D.N. Seidman, Microsc. Microanal. 13, 272 (2007).CrossRefGoogle Scholar
  38. 38.
    F. Vurpillot, A. Bostel, and D. Blavette, Appl. Phys. Lett. 76, 3127 (2000).CrossRefGoogle Scholar
  39. 39.
    F. Vurpillot, A. Cerezo, D. Blavette, and D.J. Larson, Microsc. Microanal. 10, 384 (2004).CrossRefGoogle Scholar
  40. 40.
    B. Gault, F. De Geuser, L. Bourgeois, B.M. Gabble, S.P. Ringer, and B.C. Muddle, Ultramicroscopy 111, 683 (2011).CrossRefGoogle Scholar
  41. 41.
    X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D.H. Ping, and K. Hono, Acta Mater. 49, 389 (2001).CrossRefGoogle Scholar
  42. 42.
    A. Stukowski, Model Simul. Mater. Sci. Eng. 18, 015012 (2010).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society (outside the U.S.) 2015

Authors and Affiliations

  • B. C. Hornbuckle
    • 1
  • T. Rojhirunsakool
    • 2
  • M. Rajagopalan
    • 3
  • T. Alam
    • 2
  • G. P. Purja Pun
    • 4
  • R. Banerjee
    • 2
  • K. N. Solanki
    • 3
  • Y. Mishin
    • 4
  • L. J. Kecskes
    • 1
  • K. A. Darling
    • 1
  1. 1.Weapons and Materials Research DirectorateAberdeen Proving GroundMarylandUSA
  2. 2.Center for Advanced Research and Technology, Department of Materials Science and EngineeringUniversity of North TexasDentonUSA
  3. 3.School of Engineering of Matter, Transport, and EnergyArizona State UniversityTempeUSA
  4. 4.Department of Physics and AstronomyGeorge Mason UniversityFairfaxUSA

Personalised recommendations