, Volume 67, Issue 12, pp 2959–2964 | Cite as

Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

  • H. Vo
  • A. Reichardt
  • C. Howard
  • M. D. Abad
  • D. Kaoumi
  • P. Chou
  • P. Hosemann


Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness (H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.


Critical Resolve Shear Stress Irradiate Material Irradiate Region Misalignment Angle Light Water Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge EPRI for funding, the University of Michigan for irradiating samples, DOE-NEUP for providing partial funding, the NRC for funding equipment, and the BNC for making the FIB available for this research.


  1. 1.
    G.S. Was, Trans. Am. Nucl. Soc. 98, 1023 (2008).Google Scholar
  2. 2.
    F.U. Naab, E.A. West, O.F. Toader, and G.S. Was, AIP Conf. Proc. 1336, 325 (2011).CrossRefGoogle Scholar
  3. 3.
    G.S. Was, J.T. Busby, T. Allen, E.A. Kenik, A. Jensson, S.M. Bruemmer, J. Gan, A.D. Edwards, P.M. Scott, and P.L. Andreson, J. Nucl. Mater. 300, 198 (2002).CrossRefGoogle Scholar
  4. 4.
    P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy, J. Nucl. Mater. 425, 136 (2012).CrossRefGoogle Scholar
  5. 5.
    P. Hosemann, J.G. Swadener, D. Kiener, G.S. Was, S.A. Maloy, and N. Li, J. Nucl. Mater. 375, 135 (2008).CrossRefGoogle Scholar
  6. 6.
    D. Kiener, A.M. Minor, O. Anderoglu, Y.Q. Wang, S.A. Maloy, and P. Hosemann, J. Mater. Res. 27, 2724 (2012).CrossRefGoogle Scholar
  7. 7.
    J.P. Ligda, Q. Wei, W.N. Sharpe, and B.E. Schuster, Dynamic Behavior of Materials, 2014th ed. (New York: Springer, 2013), p. 427.Google Scholar
  8. 8.
    D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, Acta Mater. 56, 580 (2008).CrossRefGoogle Scholar
  9. 9.
    J.M. Wheeler, D.E.J. Armstrong, W. Heinz, and R. Schwaiger, Curr. Opin. Solid State Mater. Sci. 2015.Google Scholar
  10. 10.
    M.R. de Figueiredo, M.D. Abad, A.J. Harris, C. Mitterer, and P. Hosemann, Thin Solid Films 578, 20 (2015).CrossRefGoogle Scholar
  11. 11.
    J.M. Wheeler, V. Maier, K. Durst, M. Goken, and J. Michler, Mater. Sci. Eng. A 585, 108 (2013).CrossRefGoogle Scholar
  12. 12.
    M. Kreuzeder, M.D. Abad, M.-M. Primorac, P. Hosemann, V. Maier, and D. Kiener, J. Mater. Sci. 50, 634 (2014).CrossRefGoogle Scholar
  13. 13.
    M.-M. Primorac, M.D. Abad, P. Hosemann, M. Kreuzeder, V. Maier, and D. Kiener, Mater. Sci. Eng. A 625, 296 (2015).CrossRefGoogle Scholar
  14. 14.
    J.F. Ziegler and J.P. Biersack, SRIM Program (Yorktown, NY: IBM Corp., 2008).Google Scholar
  15. 15.
    G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, and G.S. Was, J. Nucl. Mater. 351, 162 (2006).CrossRefGoogle Scholar
  16. 16.
    D. Kiener, C. Motz, T. Schöberl, M. Jenko, and G. Dehm, Adv. Eng. Mater. 8, 1119 (2006).CrossRefGoogle Scholar
  17. 17.
    J.M. Wheeler, R.A. Oliver, and T.W. Clyne, Diam. Relat. Mater. 19, 1348 (2010).CrossRefGoogle Scholar
  18. 18.
    W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
  19. 19.
    C. Shin, S. Lim, H. Jin, and P. Hosemann, J. Kwon J. Nucl. Mater. 444, 43 (2014).CrossRefGoogle Scholar
  20. 20.
    M.D. Uchic and D.M. Dimiduk, Mater. Sci. Eng. A 400–401, 268 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Wörgötter, D. Kiener, J.M. Purswani, D. Gall, and G. Dehm, BHM Berg. Hüttenmänn. Monatshefte 153, 257 (2008).CrossRefGoogle Scholar
  22. 22.
    I. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    304/304L Stainless Steel Production Data Bulletin (AK Steel Corporation 2013). Accessed 12 May 2015.
  24. 24.
    A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, and P. Hosemann, J. Nucl. Mater. 458, 70 (2015).CrossRefGoogle Scholar
  25. 25.
    P. Hosemann, A. Reichard, A. Lupinacci, C. Howard, H. Vo, M.D. Abad, D. Kaoumi, and P. Chou, Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors (2015).Google Scholar
  26. 26.
    J. Outinen and P. Makelainen, Fire Mater. 28, 237 (2004).CrossRefGoogle Scholar
  27. 27.
    D.J. Edwards, A. Schemer-Kohrn, and S. Bruemmer, Characterization of Neutron-Irradiated 300-Series Stainless Steels (Palo Alto, CA: EPRI, 2006).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringUC BerkeleyBerkeleyUSA
  2. 2.Mechanical Engineering DepartmentUniversity of South CarolinaColumbiaUSA
  3. 3.Electric Power Research InstitutePalo AltoUSA

Personalised recommendations