Advertisement

JOM

, Volume 67, Issue 11, pp 2621–2628 | Cite as

Creep Resistance and Oxidation Behavior of Novel Mo-Si-B-Ti Alloys

  • M. A. Azim
  • D. Schliephake
  • C. Hochmuth
  • B. Gorr
  • H.-J. Christ
  • U. Glatzel
  • M. Heilmaier
Article

Abstract

Mo-Si-B-alloys are promising materials for high-temperature applications because of their high melting point, excellent phase stability, large alloying capabilities, and reasonable mechanical as well as oxidative properties. A continuing alloy development is, however, required because of the catastrophic oxidation taking place at intermediate temperatures and the rather high density. The addition of Ti stabilizes a new ternary phase field including the Mo5Si3 (T1) phase instead of the Mo3Si (A15) phase. Alloys comprising the phases Moss, T1 and Mo5SiB2 (T2) show very high creep resistance, improved oxidation behavior and significantly reduced density. The new T1 phase seems to play a crucial role in the improved oxidation resistance of these new materials, since this phase exhibits excellent oxidation behavior at intermediate and high temperatures. The 4-component alloys possess superior creep behavior compared to Mo-Si-B alloys with the same microstructural phase arrangement and size or to the single crystal Ni-base superalloy CMSX-4. The main reason was found to be the formation of Ti-rich silicide precipitates during processing.

Keywords

Oxidation Resistance Oxidation Behavior Internal Oxidation Oxidation Isotherm Oxide Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The financial support by Deutsche Forschungsgemeinschaft is gratefully acknowledged.

References

  1. 1.
    W.O. Soboyejo and T.S. Srivatsan, in Advanced Structural Materials: Properties, Design Optimization, and Applications, ed. W. O. Soboyejo and T. S. Srivatsan (CRC Press, Boca Raton, FL, 2007) pp. 475–493.Google Scholar
  2. 2.
    I.M. Wolff and P.J. Hill, Platin. Met. Rev. 44, 158 (2000).Google Scholar
  3. 3.
    M. Heilmaier, M. Krüger, H. Saage, J. Rösler, D. Mukherji, U. Glatzel, R. Völkl, R. Hüttner, G. Eggeler, C. Somsen, T. Depka, H.-J. Christ, B. Gorr, and S. Burk, JOM 61, 61 (2009).CrossRefGoogle Scholar
  4. 4.
    J.H. Perepezko, R. Sakidja, and K.S. Kumar, in Advanced Structural Materials : Properties, Design Optimization Applications, ed. W.O. Soboyejo and T.S. Srivatsan (CRC Press, Boca Raton, FL, 2007), pp. 437–473.Google Scholar
  5. 5.
    R. Sakidja, J.H. Perepezko, S. Kim, and N. Sekido, Acta Mater. 56, 5223 (2008).CrossRefGoogle Scholar
  6. 6.
    J.A. Lemberg and R.O. Ritchie, Adv. Mater. 24, 3445 (2012).CrossRefGoogle Scholar
  7. 7.
    P. Jéhanno, M. Heilmaier, and H. Kestler, Intermetallics 12, 1005 (2004).CrossRefGoogle Scholar
  8. 8.
    B. Gorr, L. Wang, S. Burk, M. Azim, S. Majumdar, H.-J. Christ, D. Mukherji, J. Rösler, D. Schliephake, and M. Heilmaier, Intermetallics 48, 34 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Majumdar, S. Burk, D. Schliephake, M. Krüger, H.-J. Christ, and M. Heilmaier, Oxid. Met. 80, 219 (2013).CrossRefGoogle Scholar
  10. 10.
    J. Das, R. Mitra, and S.K. Roy, Intermetallics 19, 1 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Paswan, R. Mitra, and S.K. Roy, Intermetallics 15, 1217 (2007).CrossRefGoogle Scholar
  12. 12.
    Y. Yang, H. Bei, S. Chen, E.P. George, J. Tiley, and Y.A. Chang, Acta Mater. 58, 541 (2010).CrossRefGoogle Scholar
  13. 13.
    A. Yamauchi, K. Yoshimi, Y. Murakami, K. Kurokawa, and S. Hanada, Solid State Phenom. 127, 215 (2007).CrossRefGoogle Scholar
  14. 14.
    K. Yanagihara, T. Maruyama, and K. Nagata, Intermetallics 4, 133 (1996).CrossRefGoogle Scholar
  15. 15.
    S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, C. Hochmuth, and U. Glatzel, Scr. Mater. 66, 223 (2012).CrossRefGoogle Scholar
  16. 16.
    D. Schliephake, M. Azim, K. von Klinski-Wetzel, B. Gorr, H.-J. Christ, H. Bei, E.P. George, and M. Heilmaier, Metall. Mater. Trans. A 45, 1102 (2013).CrossRefGoogle Scholar
  17. 17.
    F.A. Rioult, S.D. Imhoff, R. Sakidja, and J.H. Perepezko, Acta Mater. 57, 4600 (2009).CrossRefGoogle Scholar
  18. 18.
    M.K. Meyer and M. Akinc, J. Am. Ceram. Soc. 79, 938 (1996).CrossRefGoogle Scholar
  19. 19.
    R. Mitra, Int. Mater. Rev. 51, 13 (2006).CrossRefGoogle Scholar
  20. 20.
    Z. Tang, A.J. Thom, and M. Akinc, Intermetallics 14, 537 (2006).CrossRefGoogle Scholar
  21. 21.
    J.J. Williams and M. Akinc, Oxid. Met. 58, 57 (2002).CrossRefGoogle Scholar
  22. 22.
    M.A. Azim, S. Burk, B. Gorr, H.-J. Christ, D. Schliephake, M. Heilmaier, R. Bornemann, and P.H. Bolívar, Oxid. Met. 80, 231 (2013).CrossRefGoogle Scholar
  23. 23.
    W.J.J. Wakelkamp, Diffusion and phase relations in the systems Ti-Si-C and Ti-Si-N, Ph. D thesis Technische Universiteit Eindhoven (Eindhoven, NL, 1991).Google Scholar
  24. 24.
    K. Yoshimi, S. Nakatani, T. Suda, S. Hanada, and H. Habazaki, Intermetallics 10, 407 (2002).CrossRefGoogle Scholar
  25. 25.
    P. Jéhanno, M. Heilmaier, H. Saage, M. Böning, H. Kestler, J. Freudenberger, and S. Drawin, Mater. Sci. Eng. A 463, 216 (2007).CrossRefGoogle Scholar
  26. 26.
    R. Sakidja, H. Sieber, and J.H. Perepezko, Philos. Mag. Lett. 79, 351 (1999).CrossRefGoogle Scholar
  27. 27.
    M.K. Meyer, M.J. Kramer, and M. Akinca, Intermetallics 4, 273 (1996).CrossRefGoogle Scholar
  28. 28.
    I. Rosales and J. Schneibel, Intermetallics 8, 885 (2000).CrossRefGoogle Scholar
  29. 29.
    R. Rosenkranz, G. Frommeyer, and W. Smarsly, Mater. Sci. Eng. A A152, 288 (1992).CrossRefGoogle Scholar
  30. 30.
    K. Ito, K. Ihara, K. Tanaka, M. Fujikura, and M. Yamaguchi, Intermetallics 9, 591 (2001).CrossRefGoogle Scholar
  31. 31.
    J.H. Schneibel, P.F. Tortorelli, R.O. Ritchie, and J.J. Kruzic, Metall. Mater. Trans. A 36, 525 (2005).CrossRefGoogle Scholar
  32. 32.
    D.M. Dimiduk and J.H. Perepezko, MRS Bull. 28, 639 (2003).CrossRefGoogle Scholar
  33. 33.
    K. Harris, G.L. Erickson, S.L. Sikkenga, W.D. Brantnall, J.M. Aurrecoechea, and K.G. Kubarych, in Superalloys 1992 (The Minerals, Metals & Materials Society, 1992), pp. 297–307.Google Scholar
  34. 34.
    Y. Yang, Y.A. Chang, L. Tan, and Y. Du, Mater. Sci. Eng. A 361, 281 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für Angewandte MaterialienKarlsruher Institut für TechnologieKarlsruheGermany
  3. 3.Metallische WerkstoffeUniversität BayreuthBayreuthGermany

Personalised recommendations