Advertisement

JOM

, Volume 68, Issue 1, pp 384–390 | Cite as

Synthesis and Characterization of Covalently Linked Graphene/Chitosan Composites

  • S. Sayyar
  • E. MurrayEmail author
  • S. Gambhir
  • G. Spinks
  • G. G. Wallace
  • D. L. OfficerEmail author
Article

Abstract

Chitosan, a naturally derived polysaccharide, was covalently linked to chemically converted graphene (CCG) and the properties of the resulting composites were investigated. The composites were prepared using a stable dispersion of CCG in aqueous solvent. The CCG sheets are stabilised in solution by a small number of peripheral charged groups that can be used to form amide linkages with the polymer matrix. Apart from processability and swellability, the synthesized composites exhibited improved mechanical properties and conductivity by the addition of graphene. Graphene incorporation also introduced a control over the extent of swelling in the composites. The synthesized graphene/composites are promising materials for a variety of applications, for example as conducting substrates for the electrically stimulated growth of cells.

Keywords

Chitosan Lactic Acid Graphene Oxide Graphene Sheet Covalent Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Australian Research Council (ARC) Super Science Fellowship scheme (FS100100023), the ARC Centre of Excellence Scheme (CE 140100012), the Australian Laureate Fellowship scheme (FL110100196) and the Australian National Fabrication Facility (ANFF). We also acknowledge use of the facilities and the assistance of Mr. Tony Romeo at the UOW Electron Microscopy Centre (EMC).

References

  1. 1.
    B. Guo, L. Glavas, and A.C. Albertsson, Prog. Polym. Sci. 38, 1263–1286 (2013).CrossRefGoogle Scholar
  2. 2.
    M. Vert, Biomacromolecules 6, 538–546 (2004).CrossRefGoogle Scholar
  3. 3.
    M.I. Sabir, X.X. Xu, and L. Li, J. Mater. Sci. 44, 5713–5724 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Jain, A. Sharma, and B. Basu, Biomaterials 34, 9252–9263 (2013).CrossRefGoogle Scholar
  5. 5.
    S.Y. Park, J. Park, S.H. Sim, M.G. Sung, K.S. Kim, B.H. Hong, and S. Hong, Adv. Mater. 23, H263–H267 (2011).CrossRefGoogle Scholar
  6. 6.
    C. Heo, J. Yoo, S. Lee, A. Jo, S. Jung, H. Yoo, Y.H. Lee, and M. Suh, Biomaterials 32, 19–27 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Rinaudo, Prog. Polym. Sci. 31, 603–632 (2006).CrossRefGoogle Scholar
  8. 8.
    J.L. Drury and D.J. Mooney, Biomaterials 24, 4337–4351 (2003).CrossRefGoogle Scholar
  9. 9.
    N. Bhattarai, J. Gunn, and M. Zhang, Adv. Drug Deliv. Rev. 62, 83–99 (2010).CrossRefGoogle Scholar
  10. 10.
    J.K. Francis Suh and H.W.T. Matthew, Biomaterials 21, 2589–2598 (2000).CrossRefGoogle Scholar
  11. 11.
    R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jerome, and V. Preat, Adv. Polym. Sci. 244, 19–44 (2011).CrossRefGoogle Scholar
  12. 12.
    L. Hua, W. Kai, and Y. Inoue, J. Appl. Polym. Sci. 106, 1880–1884 (2007).CrossRefGoogle Scholar
  13. 13.
    B. Das, K. Eswar Prasad, U. Ramamurty, and C.N. Rao, Nanotechnology 20, 125705 (2009).CrossRefGoogle Scholar
  14. 14.
    X.M. Yang, L.A. Li, S.M. Shang, and X.M. Tao, Polymer 51, 3431–3435 (2010).CrossRefGoogle Scholar
  15. 15.
    J.Z. Xu, T. Chen, C.L. Yang, Z.M. Li, Y.M. Mao, B.Q. Zeng, and B.S. Hsiao, Macromolecules 43, 5000–5008 (2010).CrossRefGoogle Scholar
  16. 16.
    X.M. Yang, Y.F. Tu, L.A. Li, S.M. Shang, and X.M. Tao, ACS Appl. Mater. Interfaces 2, 1707–1713 (2010).CrossRefGoogle Scholar
  17. 17.
    O. Yoon, I. Sohn, D. Kim, and N.-E. Lee, Macromol. Res. 20, 789–794 (2012).CrossRefGoogle Scholar
  18. 18.
    W. Wang, Z. Wang, Y. Liu, N. Li, W. Wang, and J. Gao, Mater. Res. Bull. 47, 2245–2251 (2012).CrossRefGoogle Scholar
  19. 19.
    X.Z. Tong, F. Song, M.Q. Li, X.L. Wang, I.J. Chin, and Y.Z. Wang, Compos. Sci. Technol. 88, 33–38 (2013).CrossRefGoogle Scholar
  20. 20.
    S. Sayyar, E. Murray, B.C. Thompson, S. Gambhir, D.L. Officer, and G.G. Wallace, Carbon 52, 296–304 (2013).CrossRefGoogle Scholar
  21. 21.
    S. Sayyar, R. Cornock, E. Murray, S. Beirne, D.L. Officer, and G.G. Wallace, Mater. Sci. Forum 773–774, 496–502 (2013).CrossRefGoogle Scholar
  22. 22.
    E. Murray, B.C. Thompson, S. Sayyar, and G.G. Wallace, Polym. Degrad. Stab. 111, 71–77 (2015).CrossRefGoogle Scholar
  23. 23.
    S. Sayyar, E. Murray, B.C. Thompson, J. Chung, D.L. Officer, S. Gambir, G.M. Spinks, and G. Wallace, J. Mater. Chem. B 3, 481–490 (2015).CrossRefGoogle Scholar
  24. 24.
    S. Gambhir, E. Murray, S. Sayyar, G.G. Wallace, and D.L. Officer, Carbon 76, 368–377 (2014).CrossRefGoogle Scholar
  25. 25.
    W.S. Hummers and R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
  26. 26.
    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, and A.D. Gorchinskiy, Chem. Mater. 11, 771–778 (1999).CrossRefGoogle Scholar
  27. 27.
    H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace, and D. Li, Adv. Mater. 20, 3557–3561 (2008).CrossRefGoogle Scholar
  28. 28.
    S.E. Hismiogullari, A.A. Hismiogullari, F. Sahin, E.T. Oner, S. Yenice, and D. Karasartova, J. Anim. Vet. Adv. 7, 681–684 (2008).Google Scholar
  29. 29.
    R. Pauliukaite, M.E. Ghica, O. Fatibello-Filho, and C.M.A. Brett, Anal. Chem. 81, 5364–5372 (2009).CrossRefGoogle Scholar
  30. 30.
    X.D. Cao, H. Dong, C.M. Li, and L.A. Lucia, J. Appl. Polym. Sci. 113, 466–472 (2009).CrossRefGoogle Scholar
  31. 31.
    A. Pawlak and M. Mucha, Thermochim. Acta 396, 153–166 (2003).CrossRefGoogle Scholar
  32. 32.
    C.E. Orrego, N. Salgado, J.S. Valencia, G.I. Giraldo, O.H. Giraldo, and C.A. Cardona, Carbohydr. Polym. 79, 9–16 (2010).CrossRefGoogle Scholar
  33. 33.
    M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys. 9, 1276–1291 (2007).CrossRefGoogle Scholar
  34. 34.
    P. Hasin, M.A. Alpuche-Aviles, and Y. Wu, J. Phys. Chem. C 114, 15857–15861 (2010).CrossRefGoogle Scholar
  35. 35.
    Y. Wan, K.A.M. Creber, B. Peppley, and V.T. Bui, Macromol. Chem. Phys. 204, 850–858 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute, AIIM Facility, Innovation CampusUniversity of WollongongWollongongAustralia

Personalised recommendations