, Volume 67, Issue 12, pp 2855–2868 | Cite as

Graphite to Graphene via Graphene Oxide: An Overview on Synthesis, Properties, and Applications

  • D. P. Hansora
  • N. G. Shimpi
  • S. MishraEmail author


This work represents a state-of-the-art technique developed for the preparation of graphene from graphite–metal electrodes by the arc-discharge method carried out in a continuous flow of water. Because of continuous arcing of graphite-metal electrodes, the graphene sheets were observed in water with uniformity and little damage. These nanosheets were subjected to various purification steps such as acid treatment, oxidation, water washing, centrifugation, and drying. The pure graphene sheets were analyzed using Raman spectrophotometry, x-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), and tunneling electron microscopy (TEM). Peaks of Raman spectra were recorded at (1300–1400 cm−1) and (1500–1600 cm−1) for weak D-band and strong G-band, respectively. The XRD pattern showed 85.6% crystallinity of pure graphite, whereas pure graphene was 66.4% crystalline. TEM and FE-SEM micrographs revealed that graphene sheets were overlapped to each other and layer-by-layer formation was also observed. Beside this research work, we also reviewed recent developments of graphene and related nanomaterials along with their preparations, properties, functionalizations, and potential applications.


Graphene Oxide Graphene Sheet Graphene Platelet Graphene Nanocomposites Direct Current Power Supply 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India (Project No.: 02(0023)/11/EMR–II) for providing financial assistance to carry out this research work.


  1. 1.
    S.S. Sonawane, S. Mishra, and N.G. Shimpi, Polym. Plast. Technol. Eng. 49, 38 (2010).CrossRefGoogle Scholar
  2. 2.
    N.G. Shimpi, R.U. Kakade, S.S. Sonawane, A.D. Mali, and S. Mishra, Polym. Plast. Technol. Eng. 50, 758 (2011).CrossRefGoogle Scholar
  3. 3.
    S. Mishra, N.G. Shimpi, and A.D. Mali, J. Polym. Res. 18, 1715 (2011).CrossRefGoogle Scholar
  4. 4.
    N.G. Shimpi and S. Mishra, Polym. Plast. Technol. Eng. 51, 111 (2012).CrossRefGoogle Scholar
  5. 5.
    A. Chatterjee and S. Mishra, Macromol. Res. 21, 474 (2013).CrossRefGoogle Scholar
  6. 6.
    N.G. Shimpi and S. Mishra, J. Reinf. Plast. Compos. 32, 947 (2013).CrossRefGoogle Scholar
  7. 7.
    N.G. Shimpi, H.A. Sonawane, A.D. Mali, and S. Mishra, Polym. Bull. 71, 515 (2014).CrossRefGoogle Scholar
  8. 8.
    C. Hazra, D. Kundu, A. Chatterjee, A. Chaudhari, and S. Mishra, Colloid Surf. A 449, 96 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Mishra and N.G. Shimpi, Polym. Plast. Technol. Eng. 47, 72 (2008).CrossRefGoogle Scholar
  10. 10.
    S. Mishra, S. Sonawane, A. Mukherji, and H.C. Mruthyunjaya, J. Appl. Polym. Sci. 100, 4190 (2006).CrossRefGoogle Scholar
  11. 11.
    N. Shimpi, A. Mali, D.P. Hansora, and S. Mishra, Nanosci. Nanoeng. 3, 8 (2015).Google Scholar
  12. 12.
    B. Yeole, T. Sen, D.P. Hansora, and S. Mishra, J. Appl. Polym. Sci. 132, 42379 (2015).CrossRefGoogle Scholar
  13. 13.
    T. Sen, N.G. Shimpi, and S. Mishra, Sens. Actuators B 190, 120 (2014).CrossRefGoogle Scholar
  14. 14.
    S. Mishra, N.G. Shimpi, and T. Sen, J. Polym. Res. 20, 1 (2013).Google Scholar
  15. 15.
    N.G. Shimpi and S. Mishra, J. Nanopart. Res. 12, 2093 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Mishra and A. Chatterjee, Polym. Adv. Technol. 22, 1593 (2011).CrossRefGoogle Scholar
  17. 17.
    D. Ratna, S.B. Jagtap, R. Rathor, R.K. Kushwaha, N.G. Shimpi, and S. Mishra, Polym. Compos. 34, 1004 (2013).CrossRefGoogle Scholar
  18. 18.
    A. Chatterjee and S. Mishra, Partic. 11, 760 (2013).CrossRefGoogle Scholar
  19. 19.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Duobonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRefGoogle Scholar
  20. 20.
    H. Raza, Graphene Nanoelectronics (Berlin: Springer, 2012), pp. 15–586.CrossRefGoogle Scholar
  21. 21.
    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
  22. 22.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal, Prog. Mater. Sci. 56, 1178 (2011).CrossRefGoogle Scholar
  23. 23.
    M.S. Fuhrer, C.N. Lau, and A.H. MacDonald, MRS Bull. 35, 289 (2010).CrossRefGoogle Scholar
  24. 24.
    S. Agnoli and G. Granozzi, Surf. Sci. 609, 1 (2013).CrossRefGoogle Scholar
  25. 25.
    T. Kuilla, S. Bhadra, D. Yaoa, N.H. Kim, S. Bose, and J.H. Lee, Prog. Polym. Sci. 35, 1350 (2010).CrossRefGoogle Scholar
  26. 26.
    A.K. Geim, Angew. Chem. Int. Ed. 50, 6967 (2011).CrossRefGoogle Scholar
  27. 27.
    N.J.M. Horing, Philos. Trans. R. Soc. A 368, 5525 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    N. Li, Z. Wang, and Z. Shi, Synthesis of Graphene with Arc-Discharge Method, ed. S. Mikhailov (Rijeka: Intech, 2011), pp. 23–36.Google Scholar
  29. 29.
    C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj, Angew. Chem. Int. Ed. 48, 7752 (2009).CrossRefGoogle Scholar
  30. 30.
    Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Adv. Mater. 22, 3906 (2010).CrossRefGoogle Scholar
  31. 31.
    Q. Tang, Z. Zhou, and Z. Chen, Nanoscale 2013, 4541 (2013).CrossRefGoogle Scholar
  32. 32.
    Q. Peng, A.K. Dearden, J. Crean, L. Han, S. Liu, X. Wen, and S. De, Nanotechnol. Sci. Appl. 2014, 1 (2014).CrossRefGoogle Scholar
  33. 33.
    X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, Small 7, 1876 (2011).CrossRefGoogle Scholar
  34. 34.
    L.J. Cote, J. Kim, V.C. Tung, J. Luo, F. Kim, and J. Huang, Pure Appl. Chem. 83, 95 (2011).Google Scholar
  35. 35.
    K. Li, G. Eres, J. Howe, Y.J. Chuang, X. Li, Z. Gu, L. Zhang, S. Xie, and Z. Pan, Sci. Rep. 3, 1 (2013).zbMATHGoogle Scholar
  36. 36.
    K.S. Sivudu and Y. Mahajan, “Mass Production of High Quality Graphene: An Analysis of Worldwide Patents” (Nanotech Insights 2012), Accessed 24 April 2012.
  37. 37.
    S. Park and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).CrossRefGoogle Scholar
  38. 38.
    S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zhang, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).CrossRefGoogle Scholar
  39. 39.
    Y. Li and N. Chopra, JOM 67, 44 (2015).CrossRefGoogle Scholar
  40. 40.
    U. Khan, A. O’neill, H. Porwal, P. May, K. Nawaz, and J.N. Coleman, Carbon 50, 470 (2012).CrossRefGoogle Scholar
  41. 41.
    D. Nuvoli, V. Alzari, R. Sanna, S. Scognamillo, M. Piccinini, L. Peponi, J.M. Kenny, and A. Mariani, Nanoscale Res. Lett. 7, 674 (2012).CrossRefGoogle Scholar
  42. 42.
    A.B. Bourlinos, V. Geogakilas, R. Zboril, T.A. Steriotis, and A.K. Stubos, Small 5, 1841 (2009).CrossRefGoogle Scholar
  43. 43.
    Y. Li and N. Chopra, JOM 67, 34 (2015).CrossRefGoogle Scholar
  44. 44.
    L. Sun and B. Fugetsu, Mater. Lett. 09, 207 (2013).CrossRefGoogle Scholar
  45. 45.
    C. Zhou, S. Chen, J. Lou, J. Wang, Q. Yang, C. Liu, D. Huang, and T. Zhu, Nanoscale Res. Lett. 9, 26 (2014).CrossRefGoogle Scholar
  46. 46.
    M.V. Antisari, R. Marazzi, and R. Krsmanovic, Carbon 41, 2393 (2003).CrossRefGoogle Scholar
  47. 47.
    H.W. Zhu, X.S. Li, B. Jiang, C.L. Xu, Y.F. Zhu, D.H. Wu, and X.H. Chen, Chem. Phys. Lett. 366, 664 (2002).CrossRefGoogle Scholar
  48. 48.
    N.G. Shimpi, S. Mishra, D.P. Hansora, and U. Savdekar: Indian Patent, 2013, 3179/MUM/2013, published online.
  49. 49.
    M. Cadek, R. Murphy, B. McCarthy, A. Drury, B. Lahr, R.C. Barklie, M. Panhuis, J.N. Coleman, and W.J. Blau, Carbon 40, 923 (2002).CrossRefGoogle Scholar
  50. 50.
    S.R.C. Vivekchand and A. Govindaraj, J. Chem. Sci. 115, 509 (2003).CrossRefGoogle Scholar
  51. 51.
    M. Jahanshahi and A.D. Kiadehi, Fabrication, Purification and Characterization of Carbon Nanotubes: Arc–Discharge in Liquid Media (ADLM), ed. S. Suzuki (Rijeka: Intech, 2013), pp. 55–76.Google Scholar
  52. 52.
    A. Koshio, M. Yudasaka, M. Zhang, and S. Iijima, Nano Lett. 1, 361 (2001).CrossRefGoogle Scholar
  53. 53.
    J.P. Griffiths: Functionalising Graphene: It’s Got to be Done, So Let’s Do It (Oxford advanced surfaces, 2014), Accessed 10 Oct 2014.
  54. 54.
    V.K. Rana, M.C. Choi, J.Y. Kong, G.Y. Kim, M.J. Kim, S.H. Kim, S. Mishra, R.P. Singh, and C.S. Ha, Macromol. Mater. Eng. 296, 131 (2011).CrossRefGoogle Scholar
  55. 55.
    V.K. Rana, S. Akhtar, S. Chatterjee, S. Mishra, R.P. Singh, and C.S. Ha, J. Nanosci. Nanotechnol. 14, 2425 (2014).CrossRefGoogle Scholar
  56. 56.
    P. Avouris, Nano Lett. 10, 4285 (2010).CrossRefGoogle Scholar
  57. 57.
    A.A. Balandin, Nat. Mater. 10, 569 (2011).CrossRefGoogle Scholar
  58. 58.
    F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).CrossRefGoogle Scholar
  59. 59.
    M. Pumera, Mater. Today 14, 308 (2011).CrossRefGoogle Scholar
  60. 60.
    J. Berashevich and T. Chakraborty, Eur. Phys. Lett. 93, 6 (2011).CrossRefGoogle Scholar
  61. 61.
    S.W. Cranford and M.J. Buehler, Nanoscale 4, 4587 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Nanoscience & TechnologyUniversity Institute of Chemical Technology, North Maharashtra UniversityJalgaonIndia
  2. 2.Department of ChemistryUniversity of MumbaiMumbaiIndia

Personalised recommendations