, Volume 67, Issue 10, pp 2375–2380 | Cite as

Predicting the Crystal Structure and Phase Transitions in High-Entropy Alloys

  • D. M. King
  • S. C. Middleburgh
  • L. Edwards
  • G. R. Lumpkin
  • M. Cortie


High-entropy alloys (HEAs) have advantageous properties compared with other systems as a result of their chemistry and crystal structure. The transition between a face-centered cubic (FCC) and body-centered cubic (BCC) structure in the Al x CoCrFeNi high-entropy alloy system has been investigated on the atomic scale in this work. The Al x CoCrFeNi system, as well as being a useful system itself, can also be considered a model HEA material. Ordering in the FCC structure was investigated, and an order–disorder transition was predicted at ~600 K. It was found that, at low temperatures, an ordered lattice is favored over a truly random lattice. The fully disordered BCC structure was found to be unstable. When partial ordering was imposed (lowering the symmetry), with Al and Ni limited specific sites of the BCC system, the BCC packing was stabilized. Decomposition of the ordered BCC single phase into a dual phase (Al-Ni rich and Fe-Cr rich) is also considered.


Configurational Entropy Special Quasirandom Structure Gibbs Free Energy Variation Configurational Entropy Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was undertaken with the assistance of resources provided at the NCI National Facility systems at the Australian National University through the National Computational Merit Allocation Scheme supported by the Australian Government. This work was supported by the Multi-modal Australian ScienceS Imaging and Visualisation Environment (MASSIVE) (


  1. 1.
    K.H. Huang, A Study on the Multicomponent Alloy Systems Containing Equal-Mole Elements (Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 1996).Google Scholar
  2. 2.
    J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
  3. 3.
    H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Mater. Sci. Eng. B 163, 184 (2009).CrossRefGoogle Scholar
  4. 4.
    Y.F. Kao, T.J. Chen, S.K. Chen, and J.W. Yeh, J. Alloys Compd. 488, 57 (2009).CrossRefGoogle Scholar
  5. 5.
    C. Lin, and H. Tsai, Intermetallics 19, 288 (2011).CrossRefGoogle Scholar
  6. 6.
    S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards, J. Alloys Compd. 599, 179 (2014).CrossRefGoogle Scholar
  7. 7.
    J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Wear 261, 513 (2006).CrossRefGoogle Scholar
  8. 8.
    M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).CrossRefGoogle Scholar
  9. 9.
    W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).CrossRefGoogle Scholar
  11. 11.
    L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J. Webber, J.C. Neuefiend, Z. Tang, and P.K. Liaw, Nat. Commun. 6, 5964 (2015).CrossRefGoogle Scholar
  12. 12.
    C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839–845 (2012).CrossRefGoogle Scholar
  13. 13.
    M.G. Poletti, and L. Battezzati, Acta Mater. 75, 297–306 (2014).CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Mater. Sci. 61, 1–93 (2014).Google Scholar
  15. 15.
    F. Tian, L. Delczeg, N. Chen, L.K. Varga, J. Shen, and L. Vitos, Phys. Rev. B 88, 085128 (2013).CrossRefGoogle Scholar
  16. 16.
    G. Kresse, and J. Hafner, Phys. Rev. B 47, 558 (1993).CrossRefGoogle Scholar
  17. 17.
    A.K. Singh, and A. Subramaniam, J. Alloys Compd. 587, 113–119 (2014).CrossRefGoogle Scholar
  18. 18.
    A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, JOM 65, 1780 (2013).CrossRefGoogle Scholar
  19. 19.
    R.E. Voskoboinikov, G.R. Lumpkin, and S.C. Middleburgh, Intermetallics 32, 23 (2013).CrossRefGoogle Scholar
  20. 20.
    P. Ramdohr, Fortschritte der Mineralogie 28, 69 (1949).Google Scholar
  21. 21.
    G. Kresse, and J. Hafner, Phys. Rev. B 49, 4251 (1994).CrossRefGoogle Scholar
  22. 22.
    C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt III, J.M. LeBeau, et al, Appl. Phys. Lett. 106, 161906 (2015).CrossRefGoogle Scholar
  23. 23.
    R. Swalin, Thermodynamics of Solids (Wiley, New York, 1991), p. 21.Google Scholar
  24. 24.
    W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1971).zbMATHGoogle Scholar
  25. 25.
    D.J.M. King, S.C. Middleburgh, A.C.Y. Liu, H.A. Tahini, G.R. Lumpkin, and M.B. Cortie, Acta Mater. 83, 269 (2015).CrossRefGoogle Scholar
  26. 26.
    L. Pauling, J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
  27. 27.
    S.C. Middleburgh, K.P.D. Lagerlof, and R.W. Grimes, J. Am. Ceram. Soc. 96, 308–311 (2013).CrossRefGoogle Scholar
  28. 28.
    W.R. Wang, W.L. Wang, and J.W. Yeh, J. Alloys Compd. 589, 143 (2014).CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Australia 2015

Authors and Affiliations

  1. 1.Department of NanomaterialsUniversity of Technology SydneySydneyAustralia
  2. 2.Institute of Materials EngineeringAustralian Nuclear Science and Technology OrganisationKirrawee DCAustralia
  3. 3.Westinghouse Electric ABVästeråsSweden

Personalised recommendations