, Volume 67, Issue 8, pp 1881–1885 | Cite as

Molar Volume Modeling of Ti-Al-Nb and Ti-Al-Mo Ternary Systems

  • Jun Zhu
  • Chuan Zhang
  • Weisheng Cao
  • Shuanglin Chen
  • Fan Zhang
  • Joon Sik Park
  • Seonghoon Yi


Molar volume modeling was performed for both Ti-Al-Nb and Ti-Al-Mo ternary systems based on the thermodynamic modeling of these two systems. Comparison between the calculated phase equilibria and the experimental data proved the accuracy of thermodynamic modeling. With the calculated density contour curves superimposed on the equilibrium phase diagram, it provides a map for alloy developers to identify the promising alloy compositions that satisfy both the phase stability and density requirements and rule out those that fail to meet the requirements.


Molar Volume Thermodynamic Modeling Excess Molar Volume Excess Gibbs Energy Density Requirement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Professors J.S. Park and S. Yi would like to thank the Agency of Defense Development, Republic of Korea, for financial support.


  1. 1.
    S.R. Singh and J.M. Howe, Philos. Mag. Lett. 65, 233 (1992).CrossRefGoogle Scholar
  2. 2.
    Y. Gao and J. Zhu, Scripta Metall. 28, 651 (1993).CrossRefGoogle Scholar
  3. 3.
    Y.G. Zhang and M.C. Chaturvedi, Mater. Sci. Eng. A 174, 45 (1994).CrossRefGoogle Scholar
  4. 4.
    C.T. Liu, J.H. Schneibel, P.J. Maziasz, J.L. Wright, and D.S. Easton, Intermetallics 4, 429 (1996).CrossRefGoogle Scholar
  5. 5.
    C.M. Austin, Curr. Opin. Solid State Mater. Sci. 4, 239 (1999).CrossRefGoogle Scholar
  6. 6.
    F. Ebrahimi, D.T. Hoelzer, and J.R. Castillo-Gomez, Mater. Sci. Eng. A 171, 35 (1993).CrossRefGoogle Scholar
  7. 7.
    W.J. Zhang, E. Evangelista, L. Francesconi, and G.L. Chen, Mater. Sci. Eng. A 207, 202 (1996).CrossRefGoogle Scholar
  8. 8.
    Z.C. Liu, J.P. Lin, S.J. Li, and G.L. Chen, Intermetallics 10, 653 (2002).CrossRefGoogle Scholar
  9. 9.
    O. Rios, S. Goyel, M.S. Kesler, D.M. Cupid, H.J. Seifert, and F. Ebrahimi, Scripta Mater. 60, 156 (2009).CrossRefGoogle Scholar
  10. 10.
    H. Erschbaumer, R. Podloucky, G. Temnitschka, and R. Wagner, Intermetallics 1, 99 (1993).CrossRefGoogle Scholar
  11. 11.
    C. Woodward and S. Kajihara, Phys. Rev. B 57, 13459 (1998).CrossRefGoogle Scholar
  12. 12.
    Y. Song, D.S. Xu, R. Yang, D. Li, and Z.Q. Hu, Intermetallics 6, 157 (1998).CrossRefGoogle Scholar
  13. 13.
    Y. Liu, H. Li, S. Wang, and H. Ye, J. Mater. Res. 24, 3165 (2009).CrossRefGoogle Scholar
  14. 14.
    V.T. Witusiewicz, A.A. Bondar, U. Hecht, and T. Ya, Velikanova. J. Alloys Compd. 472, 133 (2009).CrossRefGoogle Scholar
  15. 15.
    D.M. Cupid, O. Fabrichnaya, O. Rios, F. Ebrahimi, and H.J. Seifert, Int. J. Mater. Res. 100, 218 (2009).CrossRefGoogle Scholar
  16. 16.
    T. Maeda, M. Okada, and Y. Shida, MRS Proc. 213, 555 (1990).CrossRefGoogle Scholar
  17. 17.
    M. Kimura and K. Hashimoto, J. Phase Equilib. 20, 224 (1999).CrossRefGoogle Scholar
  18. 18.
    S. Kabra, K. Yan, S. Mayer, T. Schmoelzer, M. Reid, R. Dippenaar, H. Clemens, and K.D. Liss, J. Mater. Res. 102, 697 (2011).Google Scholar
  19. 19.
    D.M. Cupid, O. Fabrichnaya, F. Ebrahimi, and H.J. Seifert, Intermetallics 18, 1185 (2010).CrossRefGoogle Scholar
  20. 20.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (New York: Academic Press, 1970).Google Scholar
  21. 21.
  22. 22.
    X.G. Lu, M. Selleby, and B. Sundman, Calphad 29, 68 (2005).CrossRefGoogle Scholar
  23. 23.
    T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals (Oxford: Clarendon Press, 1988), p. 105.Google Scholar
  24. 24.
    H.P. Wang, S.J. Yang, and B.B. Wei, Condens. Matter. Phys. 57, 719 (2012).CrossRefGoogle Scholar
  25. 25.
    P.F. Paradis, T. Ishikawa, and S. Yoda, J. Mater. Sci. 36, 5125 (2001).CrossRefGoogle Scholar
  26. 26.
    S. Zinelis, A. Tsetsekou, and T. Papadopoulos, J. Prosthet. Dent. 90, 332 (2003).CrossRefGoogle Scholar
  27. 27.
    Pandat™ software, for Multicomponent Phase Diagram Calculation is available from CompuTherm LLC, Madison.Google Scholar
  28. 28.
    PanTi database, a thermodynamic database for multi-component titanium alloys, is available from CompuTherm LLC, Madison.Google Scholar
  29. 29.
    B.J. Lee and N. Saunders, Z. Metallkd. 88, 152 (1997).Google Scholar
  30. 30.
    I. Ansara, A.T. Dinsdale, and M.H. Rand editors. COST 507-Thermochemical database for light metal alloys. European Commission EUR 18499 EN, Luxembourg, 1998, p. 69.Google Scholar
  31. 31.
    Z. Du, C. Guo, C. Li, and W. Zhang, J. Phase Equilib. 30, 487 (2009).CrossRefGoogle Scholar
  32. 32.
    K. Santhy and K.C. Hari, Kumar. Intermetallics 18, 1713 (2010).CrossRefGoogle Scholar
  33. 33.
    J. Braun and M. Ellner, J. Alloys Compd. 309, 118 (2000).CrossRefGoogle Scholar
  34. 34.
    D. Batalu, G. Coşmeleaţă, and A. Aloman, U.P.B. Sci. Bull. Series B 68, 77 (2006).Google Scholar
  35. 35.
    J.C. Schuster and H. Ipser, Metall. Trans. 22A, 1729 (1991).CrossRefGoogle Scholar
  36. 36.
    P. Villars and L.D. Calvert, eds., Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (Materials Park, OH: ASM International, 1991).Google Scholar
  37. 37.
    B. Mozer, L.A. Bendersky, W.J. Boettinger, and R. Grant Rowe, Scripta Metall. 24, 2363 (1990).CrossRefGoogle Scholar
  38. 38.
    L.A. Bendersky, W.J. Boettinger, B.P. Burton, F.S. Biancaniello, and C.B. Shoemaker, Acta Metall. Mater. 38, 931 (1990).CrossRefGoogle Scholar
  39. 39.
    K. Kaltenbach, S. Gama, D.G. Pinatti, K. Schulze, and E.-T. Henig, Z. Metallkd. 80, 535 (1989).Google Scholar
  40. 40.
    J.H. Perepezko, Y.A. Chang, L.E. Seitzman, J.C. Lin, N.R. Bonda, and T.J. Jewett, High Temperature Aluminides and Intermetallics, ed. S.H. Wang, C.T. Liu, D.P. Pope, and J.O. Stiegler (Warrendale: The Minerals, Metals and Materials Society, 1990), pp. 19–47.Google Scholar
  41. 41.
    A. Zdziobek, M. Durand-Charre, J. Driole, and F. Durand, Z. Metallkd. 86, 334 (1995).Google Scholar
  42. 42.
    K.J. Leonard, J.C. Mishurda, and V.K. Vasudevan, Metall. Mater. Trans. 31B, 1305 (2000).CrossRefGoogle Scholar
  43. 43.
    K.J. Leonard and V.K. Vasudevan, Intermetallics 8, 1257 (2000).CrossRefGoogle Scholar
  44. 44.
    O. Shuleshova, T.G. Woodcock, H.-G. Lindenkreuz, R. Hermann, W. Löser, and B. Büchner, Acta Mater. 55, 681 (2007).CrossRefGoogle Scholar
  45. 45.
    D.M. Cupid, Thermodynamic assessment of the Ti-Al-Nb, Ti-Al-Cr, and Ti-Al-Mo systems, Ph.D. Thesis, University of Florida (2009).Google Scholar
  46. 46.
    C.R. Feng and D.J. Michel, Mater. Sci. Eng. A 152, 202 (1992).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Jun Zhu
    • 1
  • Chuan Zhang
    • 1
  • Weisheng Cao
    • 1
  • Shuanglin Chen
    • 1
  • Fan Zhang
    • 1
  • Joon Sik Park
    • 2
  • Seonghoon Yi
    • 3
  1. 1.CompuTherm, LLCMadisonUSA
  2. 2.Department of Materials Science and EngineeringHanbat National UniversityDaejeonRepublic of Korea
  3. 3.Materials Science and Metallurgical EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations