Advertisement

JOM

, Volume 67, Issue 11, pp 2534–2542 | Cite as

New Bismuth-Substituted Hydroxyapatite Nanoparticles for Bone Tissue Engineering

  • Gabriela Ciobanu
  • Ana Maria Bargan
  • Constantin Luca
Article

Abstract

New bismuth-substituted hydroxyapatite [Ca10−x Bi x (PO4)6(OH)2 where x = 0–2.5] nanoparticles were synthesized by the co-precipitation method from aqueous solutions. The structural properties of the samples were analyzed by scanning electron microscopy coupled with x-ray analysis, x-ray powder diffraction, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Brunauer–Emmett–Teller surface area analysis. The results confirm that bismuth ions have been incorporated into the hydroxyapatite lattice. The prepared nanocrystalline powders consisted of hydroxyapatite as single phase with hexagonal structure, crystal sizes smaller than 60 nm and (Bi + Ca)/P atomic ratio of around 1.67. The hydroxyapatite samples doped with Bi have mesoporous textures with pores size of around 2 nm and specific surface area in the range of 12–25 m2/g. The Bi-substituted hydroxyapatite powders are more effective against Gram-negative Escherichia coli bacteria than Gram-positive Staphylococcus aureus bacteria.

Keywords

Bismuth Hydroxyapatite Hydroxyapatite Powder Apatite Lattice Pure Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.C.M. Driessens and B. Soc, Chim. Belg. 89, 663 (1997).CrossRefGoogle Scholar
  2. 2.
    M.T. Bernards, C. Qin, and S. Jiang, Colloid Surf. B 64, 236 (2008).CrossRefGoogle Scholar
  3. 3.
    R.Z. LeGeros, Clin. Orthop. Relat. R 395, 81 (2002).CrossRefGoogle Scholar
  4. 4.
    J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Amsterdam: Elsevier Press, 1994), p. 111.Google Scholar
  5. 5.
    T. Tamm and M. Peld, J. Solid State Chem. 179, 1581 (2006).CrossRefGoogle Scholar
  6. 6.
    J. Shepherd, D. Shepherd, and S. Best, J. Mater. Sci. 23, 2335 (2012).Google Scholar
  7. 7.
    S.Y. Lee, J.H. Kwak, M.S. Kim, S.W. Nam, T.H. Lim, S.A. Hong, and K.J. Yoon, Korean J. Chem. Eng. 24, 226 (2007).CrossRefGoogle Scholar
  8. 8.
    K. Zhu, K. Yanagisawa, R. Shimanouchi, A. Onda, and K. Kajiyoshi, J. Eur. Ceram. Soc. 26, 509 (2006).CrossRefGoogle Scholar
  9. 9.
    S.H. Lee and K.J. Yoon, Korean J. Chem. Eng. 18, 228 (2001).CrossRefGoogle Scholar
  10. 10.
    I.R. de Lima, G.G. Alves, C.A. Soriano, A.P. Campaneli, T.H. Gasparoto, E.S. Ramos, L.A. de Sena, A.M. Rossi, and J.M. Granjeiro, J. Biomed. Mater. Res. A 98A, 351 (2011).CrossRefGoogle Scholar
  11. 11.
    T.N. Kim, Q.L. Feng, J.O. Kim, J. Wu, H. Wang, G.Q. Chen, and F.Z. Cui, J. Mater. Sci. 9, 129 (1998).Google Scholar
  12. 12.
    B.J. Marshall, Am. J. Gastroenterol. 86, 16 (1991).Google Scholar
  13. 13.
    N. Yang and H. Sun, Coord. Chem. Rev. 251, 2354 (2007).CrossRefGoogle Scholar
  14. 14.
    M. Stoltenberg, S. Juhl, and G. Danscher, Eur. J. Histochem. 51, 53 (2007).Google Scholar
  15. 15.
    L. Miersch, T. Rüffer, H. Lang, S. Schulze, M. Hietschold, D. Zahn, and M. Mehring, Eur. J. Inorg. Chem. 30, 4763 (2010).CrossRefGoogle Scholar
  16. 16.
    F. Chen, C. Liu, and Y. Mao, Acta Biomater. 6, 3199 (2010).CrossRefGoogle Scholar
  17. 17.
    A.W. Bauer, W.M. Kirby, J.C. Sherris, and M. Truck, Am. J. Clin. Pathol. 45, 493 (1966).Google Scholar
  18. 18.
    T. Suzuki, T. Hatsushika, and M. Miyake, J. Chem. Soc. Farad. T. 1, 3605 (1982).CrossRefGoogle Scholar
  19. 19.
    H. Kim, R.P. Camata, Y.K. Vohra, and W.R. Lacefield, J. Mater. Sci. Mater. Med. 16, 961 (2005).CrossRefGoogle Scholar
  20. 20.
    D.G. Guo, A.H. Wang, Y. Han, and K.W. Xu, Acta Biomater. 5, 3512 (2009).CrossRefGoogle Scholar
  21. 21.
    E.I. Getman, A.V. Ignatov, S.N. Loboda, M.A.B.A. Jabar, A.O. Zhegailo, and A.S. Gluhova, Funct. Mater. 18, 293 (2011).Google Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  23. 23.
    A. Baumer, R. Caruba, H. Bizouard, and A. Peckett, Can. Mineral. 21, 567 (1983).Google Scholar
  24. 24.
    D. Bernache-Assollant, A. Ababou, E. Champion, and M. Heughebaert, J. Eur. Ceram. Soc. 23, 229 (2003).CrossRefGoogle Scholar
  25. 25.
    R.J. Chung, M.F. Hsieh, R.N. Panda, and T.S. Chin, Surf. Coat. Tech. 165, 194 (2003).CrossRefGoogle Scholar
  26. 26.
    M. Pourbaghi-Masouleh and H. Asgharzadeh, Mater. Sci.—Pol. 31, 424 (2013).CrossRefGoogle Scholar
  27. 27.
    A. Serret, M.V. Cabanas, and M. Vallet-Regi, Chem. Mater. 12, 3836 (2000).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Gabriela Ciobanu
    • 1
  • Ana Maria Bargan
    • 1
  • Constantin Luca
    • 1
  1. 1.Faculty of Chemical Engineering and Environmental Protection“Gheorghe Asachi” Technical University of IasiIasiRomania

Personalised recommendations