Advertisement

JOM

, Volume 67, Issue 4, pp 849–857 | Cite as

Atomic Force Microscopy Techniques for Nanomechanical Characterization: A Polymeric Case Study

  • Melania Reggente
  • Marco Rossi
  • Livia Angeloni
  • Emanuela Tamburri
  • Massimiliano Lucci
  • Ivan Davoli
  • Maria Letizia Terranova
  • Daniele Passeri
Article

Abstract

Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing.

Keywords

Atomic Force Microscopy PANI LDPE Contact Stiffness Highly Oriented Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C. Reynaud, F. Sommer, C. Quet, N. El Buonia, and D.T. Minh, Surf. Interface Anal. 30, 185 (2000).CrossRefGoogle Scholar
  2. 2.
    T. Kocourek, M. Růžek, M. Landa, M. Jelínek, J. Mikšovský, and J. Kopeček, Surf. Coat. Tech. 205, S67 (2011).CrossRefGoogle Scholar
  3. 3.
    Y.H. Ding, X.H. Deng, X. Jiang, P. Zhang, J.R. Yin, and Y. Jiang, J. Mater. Sci. 48, 3479 (2013).CrossRefGoogle Scholar
  4. 4.
    D. Passeri, A. Bettucci, A. Biagioni, M. Rossi, A. Alippi, E. Tamburri, M. Lucci, I. Davoli, and S. Berezina, Ultramicroscopy 109, 1417 (2009).CrossRefGoogle Scholar
  5. 5.
    D. Passeri, A. Alippi, A. Bettucci, M. Rossi, A. Alippi, E. Tamburri, and M.L. Terranova, Synth. Met. 161, 7 (2011).CrossRefGoogle Scholar
  6. 6.
    S.N. Magonov and D.H. Reneker, Annu. Rev. Mater. Sci 27, 175 (1997).CrossRefGoogle Scholar
  7. 7.
    S. Amelio, A.V. Goldade, U. Rabe, V. Scherer, B. Bhushan, and W. Arnold, Thin Solid Films 392, 75 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Prasad, M. Kopycinska, U. Rabe, and W. Arnold, Geophys. Res. Lett. 29, 1172 (2002).CrossRefGoogle Scholar
  9. 9.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, V. Sessa, A. Fiori, E. Tamburri, and M.L. Terranova, Appl. Phys. Lett. 88, 121910 (2006).CrossRefGoogle Scholar
  10. 10.
    M. Kopycinska-Müller, R.H. Geiss, J. Müller, and D.C. Hurley, Nanotechnology 16, 703 (2005).CrossRefGoogle Scholar
  11. 11.
    P.A. Yuya, D.C. Hurley, and J.A. Turner, J. Appl. Phys. 104, 074916 (2008).CrossRefGoogle Scholar
  12. 12.
    J.P. Killgore, D.G. Yablon, A.H. Tsou, A. Gannepalli, P.A. Yuya, J.A. Turner, R. Proksch, and D.C. Hurley, Langmuir 27, 13983 (2011).CrossRefGoogle Scholar
  13. 13.
    P.A. Yuya, D.C. Hurley, and J.A. Turner, J. Appl. Phys. 109, 113528 (2011).CrossRefGoogle Scholar
  14. 14.
    P. Schön, S. Dutta, M. Shirazi, J. Noordermeer, and G.J. Vancso, J. Mater. Sci. 46, 3507 (2011).CrossRefGoogle Scholar
  15. 15.
    P. Sch¨on, K. Bagdi, K. Moln´ar, P. Markus, B. Pukánszky, and G.J. Vancso, Eur. Polym. J. 47, 692 (2011).CrossRefGoogle Scholar
  16. 16.
    M.E. Dokukin and I. Sokolov, Langmuir 28, 16060 (2012).CrossRefGoogle Scholar
  17. 17.
    D. Passeri, M. Rossi, E. Tamburri, and M.L. Terranova, Anal. Bioanal. Chem. 405, 1463 (2013).CrossRefGoogle Scholar
  18. 18.
    E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Sordi, D. Passeri, R. Matassa, and M. Rossi, Polymer 53, 4045 (2012).CrossRefGoogle Scholar
  19. 19.
    E. Tamburri, V. Guglielmotti, S. Orlanducci, M.L. Terranova, D. Passeri, M. Rossi, and D. Sordi, MRS Proceedings, vol. 1452 (Cambridge, U.K.: Cambridge UniversityPress, 2012), pp. mrss12–1452–ff05–06.Google Scholar
  20. 20.
    M.L. Terranova, E. Tamburri, V. Guglielmotti, F. Toschi, S. Orlanducci, D. Passeri, and M. Rossi, AIP Conf. Proc. 1459, 111 (2012).CrossRefGoogle Scholar
  21. 21.
    D. Passeri, A. Biagioni, M. Rossi, E. Tamburri, and M.L. Terranova, Eur. Polym. J. 49, 991 (2013).CrossRefGoogle Scholar
  22. 22.
    E. Tamburri, V. Guglielmotti, R. Matassa, S. Orlanducci, S. Gay, G. Reina, M.L. Terranova, D. Passeri, and M. Rossi, J. Mater. Chem. C 2, 3703 (2014).CrossRefGoogle Scholar
  23. 23.
    O. Sahin, S. Magonov, C. Su, C.F. Quate, and O. Solgaard, Nat. Nanotechnol. 2, 507 (2007).CrossRefGoogle Scholar
  24. 24.
    O. Sahin and N. Erina, Nanotechnology 19, 445717 (2008).CrossRefGoogle Scholar
  25. 25.
    B.V. Derjaguin, V.M. Muller, and Y.P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
  26. 26.
    P. Ihalainen, J. Järnström, A. Määttänen, and J. Peltonen, Colloid Surf. A 373, 138 (2011).CrossRefGoogle Scholar
  27. 27.
    K. Sweers, K. van der Werf, M. Bennink, and V. Subramaniam, Nanoscale Res. Lett. 6, 270 (2011).CrossRefGoogle Scholar
  28. 28.
    K.M. Leung, G. Wanger, Q. Guo, Y. Gorby, G. Southam, W.M. Laue, and J. Yang, Soft Matter 7, 6617 (2011).CrossRefGoogle Scholar
  29. 29.
    U. Rabe, J. Janser, and W. Arnold, Rev. Sci. Instrum. 67, 3281 (1996).CrossRefGoogle Scholar
  30. 30.
    D. Passeri, A. Bettucci, M. Germano, M. Rossi, A. Alippi, S. Orlanducci, M.L. Terranova, and M. Ciavarella, Rev. Sci. Instrum. 76, 093904 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Jena, R.B. Tokas, N. Kamble, S. Thakur, D. Bhattacharyya, and N.K. Sahoo, Thin Solid Films 537, 163 (2013).CrossRefGoogle Scholar
  32. 32.
    G. Stan and W. Price, Rev. Sci. Instrum. 77, 103707 (2006).CrossRefGoogle Scholar
  33. 33.
    D. Passeri, M. Rossi, and J.J. Vlassak, Ultramicroscopy 128, 32 (2013).CrossRefGoogle Scholar
  34. 34.
    U. Rabe, Applied Scanning Probe Methods II, ed. B. Bhushan andH. Fuchs (New York: Springer, 2006), pp. 37–90.Google Scholar
  35. 35.
    U. Rabe, M. Kopycinska-M¨uller, S. Hirsekorn, Acoustic Scanning Probe Microscopy, ed. by F. Marinello, D. Passeri, and E. Savio (Berlin: Springer, 2012), chap. 5, pp. 123–153.Google Scholar
  36. 36.
    D.C. Hurley and J.A. Turner, J. Appl. Phys. 102, 033509 (2007).CrossRefGoogle Scholar
  37. 37.
    M. Kopycinska, C. Ziebert, H. Schmitt, U. Rabe, S. Hirsekorn, and W. Arnold, Surf. Sci. 532, 450 (2003).CrossRefGoogle Scholar
  38. 38.
    Y. Zheng, R.E. Geer, K. Dovidenko, M. Kopycinska-Müller, and D.C. Hurley, J. Appl. Phys. 100, 124308 (2006).CrossRefGoogle Scholar
  39. 39.
    G. Stan, C.V. Ciobanu, T.P. Thayer, G.T. Wang, J.R. Creighton, K.P. Purushotham, L.A. Bendersky, and R.F. Cook, Nanotechnology 20, 035706 (2009).CrossRefGoogle Scholar
  40. 40.
    M. Preghenella, A. Pegoretti, and C. Migliaresi, Polym. Test. 25, 443 (2006).CrossRefGoogle Scholar
  41. 41.
    D. Passeri, M. Rossi, A. Alippi, A. Bettucci, M.L. Terranova, E. Tamburri, and F. Toschi, Physica E 40, 2419 (2008).CrossRefGoogle Scholar
  42. 42.
    W. Zhao, R.P. Singh, and C.S. Korach, Compos. Part A. 40, 675 (2009).Google Scholar
  43. 43.
    D.G. Yablon, A. Gannepalli, R. Proksch, J. Killgore, D.C. Hurley, J. Grabowski, and A.H. Tsou, Macromolecules 45, 4363 (2012).CrossRefGoogle Scholar
  44. 44.
    A. Fava, M. Lucci, D. Faso, A. Luzzi, M. Salvato, A. Vecchione, R. Fittipaldi, I. Ottaviani, I. Colantoni, M. Tomellini, and I. Davoli, J. Electrochem. Soc. 161, D540 (2014).CrossRefGoogle Scholar
  45. 45.
    S.K. Balijepalli, I. Colantoni, R. Donnini, S. Kaciulis, M. Lucci, R. Montanari, N. Ucciardello, and A. Varone, La Metallurgia Italiana 1/2013, 42 (2013).Google Scholar
  46. 46.
    J.P. Killgore, J.Y. Kelly, C.M. Stafford, M.J. Fasolka, and D.C. Hurley, Nanotechnology 22, 175706 (2011).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Melania Reggente
    • 1
  • Marco Rossi
    • 1
  • Livia Angeloni
    • 1
  • Emanuela Tamburri
    • 2
  • Massimiliano Lucci
    • 3
  • Ivan Davoli
    • 3
  • Maria Letizia Terranova
    • 2
  • Daniele Passeri
    • 1
  1. 1.Department of Basic and Applied Sciences for EngineeringSapienza University of RomeRomeItaly
  2. 2.Dipartimento di Scienze & Tecnologie Chimiche - MinimaLabUniversity of Rome Tor VergataRomeItaly
  3. 3.Department of PhysicsUniversity of Rome Tor VergataRomeItaly

Personalised recommendations