Advertisement

JOM

, Volume 67, Issue 3, pp 608–615 | Cite as

Additive Manufacturing of Metal Cellular Structures: Design and Fabrication

  • Li YangEmail author
  • Ola Harrysson
  • Denis Cormier
  • Harvey West
  • Haijun Gong
  • Brent Stucker
Article

Abstract

With the rapid development of additive manufacturing (AM), high-quality fabrication of lightweight design-efficient structures no longer poses an insurmountable challenge. On the other hand, much of the current research and development with AM technologies still focuses on material and process development. With the design for additive manufacturing in mind, this article explores the design issue for lightweight cellular structures that could be efficiently realized via AM processes. A unit-cell-based modeling approach that combines experimentation and limited-scale simulation was demonstrated, and it was suggested that this approach could potentially lead to computationally efficient design optimizations with the lightweight structures in future applications.

Keywords

Topology Optimization Cellular Structure Additive Manufacturing Selective Laser Melting Electron Beam Melting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T. Catts, GE printing engine fuel nozzles propels $6 billion market, Bloomberg, http://www.bloomberg.com/news/2013-11-12/ge-printing-engine-fuel-nozzles-propels-6-billion-market.html. Accessed 12 Nov 2013.
  2. 2.
    GE Reports, This electron gun builds jet engines, http://www.gereports.com/post/94658699280/this-electron-gun-builds-jet-engines. Accessed 17 Aug 2014.
  3. 3.
    B. Coxworth, World’s first 3d-printed titanium bicycle frame could lead to cheaper, lighter bikes, Gizmag, http://www.gizmag.com/3d-printed-titanium-bicycle-frame/30760/. Accessed 8 Feb 2014.
  4. 4.
    Y.-H. Lee and K.-J. Kang, Mater. Des. 30, 4434 (2009).CrossRefMathSciNetGoogle Scholar
  5. 5.
    A.-J. Wang, R.S. Kumar, and D.L. McDowell, Mechan. Adv. Mater. Struct. 12, 185 (2005).CrossRefGoogle Scholar
  6. 6.
    V.S. Deshpande, N.A. Fleck, M.F. Ashby, and J. Mechan, Phys. Solids 49, 1747 (2001).CrossRefzbMATHGoogle Scholar
  7. 7.
    R. Hague, G. D’Costa, and P.M. Dickens, Rapid Prototyp. J. 7, 66 (2009).CrossRefGoogle Scholar
  8. 8.
    O. Cansizoglu (Ph.D. dissertation, North Carolina State University, 2008).Google Scholar
  9. 9.
    N.P. Fey, B.J. South, C.C. Seepersad and R.R. Neptune (Paper presented at the 20th International Solid Freeform Fabrication Symposium, Austin, TX, 2009).Google Scholar
  10. 10.
    P. Colombo and H.P. Degischer, Mater. Sci. Technol. 26, 1145 (2010).CrossRefGoogle Scholar
  11. 11.
    L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, 2nd ed. (New York: Cambridge University Press, 1997).CrossRefGoogle Scholar
  12. 12.
    R. Lakes, Nature 361, 511 (1993).CrossRefGoogle Scholar
  13. 13.
    M.F. Ashby, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, and H.N.G. Wadley, Metal Forams: A Design Guide, 1st ed. (Woburn: Butterworth Heinemann, 2000).Google Scholar
  14. 14.
    P. Colombo, Science 322, 381 (2008).CrossRefGoogle Scholar
  15. 15.
    K.-J. Kang, Acta Mater. 57, 1865 (2009).CrossRefGoogle Scholar
  16. 16.
    D. Ruan, G. Lu, F.L. Chen, and E. Siores, Compos. Struct. 57, 331 (2002).CrossRefGoogle Scholar
  17. 17.
    K. Ushijima, D.-H. Chen, and H. Nisitani, Int. J. Mod. Phys. B 22, 1730 (2008).CrossRefGoogle Scholar
  18. 18.
    Y. Sugimura, J. Meyer, M.Y. He, H. Bart-Smith, J. Grenstedt, and A.G. Evans, Acta Mater. 45, 5245 (1997).CrossRefGoogle Scholar
  19. 19.
    A.G. Leach, J. Phys. D 26, 733 (1993).CrossRefGoogle Scholar
  20. 20.
    F.A. Acosta, A.H. Castillejos, J.M. Almanza, and A. Flores, Metall. Mater. Trans. B 26B, 159 (1995).CrossRefGoogle Scholar
  21. 21.
    A. Ciftja, T.A. Engh, and M. Tangstad, Metall. Mater. Trans. B 41B, 146 (2010).CrossRefGoogle Scholar
  22. 22.
    B. Dabrowski, W. Swieszkowski, D. Godlinski, and K.J. Kurzydlowski, J. Biomed. Mater. Res. B 95, 53 (2010).CrossRefGoogle Scholar
  23. 23.
    L.F. Cooper, J. Prosthet. Dent. 84, 522 (2000).CrossRefGoogle Scholar
  24. 24.
    S. Hansson and M. Norton, J. Biomechan. 32, 829 (1999).CrossRefGoogle Scholar
  25. 25.
    R.G. Hutchinson, N.A. Fleck, and J. Mechan, Phys. Solids 54, 756 (2006).CrossRefzbMATHGoogle Scholar
  26. 26.
    H. Chen, Q. Zheng, L. Zhao, Y. Zhang, and H. Fan, Compos. Struct. 94, 3448 (2012).CrossRefGoogle Scholar
  27. 27.
    R. Lakes, Science 235, 1038 (1987).CrossRefGoogle Scholar
  28. 28.
    M. Bianchi and F.L. Scarpa, J. Mater. Sci. 43, 5851 (2008).CrossRefGoogle Scholar
  29. 29.
    L. Yang, O. Harrysson, D. Cormier, and H. West, Acta Mater. 60, 3370 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Yang, O. Harrysson, D. Cormier, and H. West, J. Mater. Sci. 48, 1413 (2012).CrossRefGoogle Scholar
  31. 31.
    P.R. Onck, E.W. Andrews, and L.J. Gibson, Int. J. Mech. Sci. 43, 681 (2001).CrossRefzbMATHGoogle Scholar
  32. 32.
    L. Yang, H. Gong, S. Dilip, and B. Stucker (Paper presented at the 25th Solid Freeform Fabrication Symposium, Austin, TX, 2014).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  • Li Yang
    • 1
    Email author
  • Ola Harrysson
    • 2
  • Denis Cormier
    • 3
  • Harvey West
    • 2
  • Haijun Gong
    • 1
  • Brent Stucker
    • 1
  1. 1.Department of Industrial EngineeringUniversity of LouisvilleLouisvilleUSA
  2. 2.Department of Industrial & System EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Industrial & System EngineeringRochester Institute of TechnologyRochesterUSA

Personalised recommendations