Advertisement

JOM

, Volume 67, Issue 3, pp 590–596 | Cite as

Additive Manufacturing of Al-12Si Alloy Via Pulsed Selective Laser Melting

  • R. Chou
  • J. Milligan
  • M. Paliwal
  • M. BrochuEmail author
Article

Abstract

Additive manufacturing (AM) of metallic materials is experiencing a research and commercialization craze in almost all industrial sectors. However, to date, AM has been limited to a small numbers of alloys. With respect to aluminum, two alloys received some attention: Al-12Si and Al-10Si-1Mg. In both cases, fully dense components have been achieved using a continuous-wave selective laser melting system. In this article, a new approach of selective laser melting using a pulsed-laser source as opposed to a continuous-wave laser is proposed. Pulse selective laser melting (P-SLM) would allow for greater control over the heat input and thus further optimization possibilities of the microstructure. P-SLM was demonstrated using the Al-12Si system. Si refinement below 200 nm was achieved throughout the component. Density up to 95% and high hardness of above 135 HV were obtained. The solidification mechanism is also explained.

Keywords

Additive Manufacturing Molten Pool Selective Laser Melt Selective Laser Melt Process Peak Laser Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

The authors would like to thank AUTO21 (Grant C502-CPM) for financial support of this research.

References

  1. 1.
    J.P. Kruth, M.C. Leu, and T. Nakagawa, CIRP Ann. Manufact. Tech. 47, 525 (1998).CrossRefGoogle Scholar
  2. 2.
    D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).CrossRefGoogle Scholar
  3. 3.
    K.V. Wong and A. Hernandez, ISRN Mech. Eng. 2012, 10 (2012).CrossRefGoogle Scholar
  4. 4.
    I. Gibson, D.W. Rosen, and B. Sucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (New York: Springer, 2010).CrossRefGoogle Scholar
  5. 5.
    E. Louvis, P. Fox, and C.J. Sutcliffe, J. Mater. Process. Tech. 211, 275 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, Mater. Des. 34, 159 (2012).CrossRefGoogle Scholar
  7. 7.
    D. Buchbinder, H. Schleifenbaum, S. Heidrich, W. Meiners, and J. Bültmann, Phys. Procedia 12, 271 (2011).CrossRefGoogle Scholar
  8. 8.
    K. Kempen, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Phys. Procedia 39, 439 (2012).CrossRefGoogle Scholar
  9. 9.
    E.O. Olakanmi, R.F. Cochrane, and K.W. Dalgarno, J. Mater. Process. Tech. 211, 113 (2011).CrossRefGoogle Scholar
  10. 10.
    L. Thijs, K. Kempen, J.-P. Kruth, and J. Van Humbeeck, Acta Mater. 61, 1809 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Warmuzek, Aluminum-Silicon Casting Alloys: Atlas of Microfractographs (Materials Park, OH: ASM International, 2004).Google Scholar
  12. 12.
    M. Salehi, K. Dehghani, and J. Alloy, Compd. 457, 357 (2008).CrossRefGoogle Scholar
  13. 13.
    J. Xu, F. Liu, D. Zhang, and Z. Jian, J. Therm. Anal. Calorim. (2014).Google Scholar
  14. 14.
    H.J. Niu and I.T.H. Chang, J. Mater. Sci. 35, 31 (2000).CrossRefGoogle Scholar
  15. 15.
    A. Manthiram, D.L. Bourell, and H.L. Marcus, JOM 45 (11), 66 (1993).CrossRefGoogle Scholar
  16. 16.
    X.J. Wang, L.C. Zhang, M.H. Fang, and T.B. Sercombe, Mater. Sci. Eng. A 597, 370 (2014).CrossRefGoogle Scholar
  17. 17.
    A. Simchi, Mater. Sci. Eng. A 428, 148 (2006).CrossRefGoogle Scholar
  18. 18.
    X. Liu, P.K. Chu, and C. Ding, Mater. Sci. Eng. R 47, 49 (2004).CrossRefGoogle Scholar
  19. 19.
    J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, and J. Van Humbeeck, Proceedings of the 16th International Symposium on Electromachining (Shanghai, China: Shanghai Jiao Tong University Press, 2010).Google Scholar
  20. 20.
    D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. Ambrosio, and E. Atzeni, Materials 6, 856 (2013).CrossRefGoogle Scholar
  21. 21.
    W. Shifeng, L. Shuai, W. Qingsong, C. Yan, Z. Sheng, and S. Yusheng, J. Mater. Process. Tech. 214, 2660 (2014).CrossRefGoogle Scholar
  22. 22.
    J. Milligan, J.M. Shockley, R.R. Chromik, and M. Brochu, Tribol. Int. 66, 1 (2013).CrossRefGoogle Scholar
  23. 23.
    F.A. España, V.K. Balla, and A. Bandyopadhyay, Philos. Mag. 91, 574 (2010).CrossRefGoogle Scholar
  24. 24.
    H.S. Kang, W.Y. Yoon, K.H. Kim, M.H. Kim, and Y.P. Yoon, Mater. Sci. Eng. A 404, 117 (2005).CrossRefGoogle Scholar
  25. 25.
    Y. Birol, J. Mater. Sci. 31, 2139 (1996).CrossRefGoogle Scholar
  26. 26.
    F. Yilmaz and R. Elliott, J. Mater. Sci. 24, 2065 (1989).CrossRefGoogle Scholar
  27. 27.
    S. Nafisi and R. Ghomashchi, Mater. Character. 57, 371 (2006).CrossRefGoogle Scholar
  28. 28.
    S. Kou, Welding Metallurgy, 2nd ed. (New York: Wiley, 2003).Google Scholar
  29. 29.
    W. Kurz, B. Giovanola, and R. Trivedi, Acta Metall. 34, 823 (1986).CrossRefGoogle Scholar
  30. 30.
    A. Matsunawa, M. Mizutani, and S. Katayama, Trans. JWRI 25, 161 (1996).Google Scholar
  31. 31.
    K.G. Prashanth, S. Scudino, H.J. Klauss, K.B. Surreddi, L. Löber, Z. Wang, A.K. Chaubey, U. Kühn, and J. Eckert, Mater. Sci. Eng. A 590, 153 (2014).CrossRefGoogle Scholar
  32. 32.
    K.G. Prashanth, B. Debalina, Z. Wang, P.F. Gostin, A. Gebert, M. Calin, U. Kühn, M. Kamaraj, S. Scudino, and J. Eckert, J. Mater. Res. 29, 2044 (2014).CrossRefGoogle Scholar
  33. 33.
    E. Karaköse and M. Keskin, J. Alloy Compd. 479, 230 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2015

Authors and Affiliations

  1. 1.Department of Mining and Materials EngineeringMcGill UniversityMontrealCanada

Personalised recommendations